Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Acta Biomater ; 179: 385-397, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554889

RESUMO

T cells are adaptive immune cells essential in pathogenic response, cancer, and autoimmune disorders. During the integration of biomaterials with host tissue, T cells modify the local inflammatory environment by releasing cytokines that promote inflammatory resolution following implantation. T cells are vital for the modulation of innate immune cells, recruitment and proliferation of mesenchymal stem cells (MSCs), and formation of functional tissue around the biomaterial implant. We have demonstrated that deficiency of αß T cells promotes macrophage polarization towards a pro-inflammatory phenotype and attenuates MSC recruitment and proliferation in vitro and in vivo. The goal of this study was to understand how CD4+ and CD8+ T cells, subsets of the αß T cell family, impact the inflammatory response to titanium (Ti) biomaterials. Deficiency of either CD4+ or CD8+ T cells increased the proportion of pro-inflammatory macrophages, lowered anti-inflammatory macrophages, and diminished MSC recruitment in vitro and in vivo. In addition, new bone formation at the implantation site was significantly reduced in T cell-deficient mice compared to T cell-competent mice. Deficiency of CD4+ T cells exacerbated these effects compared to CD8+ T cell deficiency. Our results show the importance of CD4+ and CD8+ T cells in modulating the inflammatory response and promoting new bone formation in response to modified Ti implants. STATEMENT OF SIGNIFICANCE: CD4+ and CD8+ T cells are essential in modulating the peri-implant microenvironment during the inflammatory response to biomaterial implantation. This study shows that deficiency of either CD4+ or CD8+ T cell subsets altered macrophage polarization and reduced MSC recruitment and proliferation at the implantation site.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Inflamação , Titânio , Animais , Titânio/farmacologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Inflamação/patologia , Camundongos , Próteses e Implantes , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo
2.
Acta Biomater ; 169: 605-624, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532133

RESUMO

Physiochemical cues like topography and wettability can impact the inflammatory response and tissue integration after biomaterial implantation. T cells are essential for immunomodulation of innate immune cells and play an important role in the host response to biomaterial implantation. This study aimed to understand how CD4+ and CD8+ T cell subsets, members of the αß T cell family, polarize in response to smooth, rough, or rough-hydrophilic titanium (Ti) implants and whether their presence modulates immune cell crosstalk and mesenchymal stem cell (MSC) recruitment following biomaterial implantation. Post-implantation in mice, we found that CD4+ and CD8+ T cell subsets polarized differentially in response to modified Ti surfaces. Additionally, mice lacking αß T cells had significantly more pro-inflammatory macrophages, fewer anti-inflammatory macrophages, and reduced MSC recruitment in response to modified Ti post-implantation than αß T cell -competent mice. Our results demonstrate that T cell activation plays a significant role during the inflammatory response to implanted biomaterials, contributing to macrophage polarization and MSC recruitment and proliferation, and the absence of αß T cells compromises new bone formation at the implantation site. STATEMENT OF SIGNIFICANCE: T cells are essential for immunomodulation and play an important role in the host response to biomaterial implantation. Our results demonstrate that T cells actively participate during the inflammatory response to implanted biomaterials, controlling macrophage phenotype and recruitment of MSCs to the implantation site.


Assuntos
Células-Tronco Mesenquimais , Titânio , Camundongos , Animais , Titânio/farmacologia , Materiais Biocompatíveis/metabolismo , Macrófagos/metabolismo , Linfócitos T , Proliferação de Células
4.
Acta Biomater ; 166: 670-684, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37187302

RESUMO

Neutrophils are the most abundant immune cells in the blood and the first cells to be recruited to the biomaterial implantation site. Neutrophils are fundamental in recruiting mononuclear leukocytes to mount an immune response at the injury site. Neutrophils exert significant pro-inflammatory effects through the release of cytokines and chemokines, degranulation and release of myeloperoxidase (MPO) and neutrophil elastase (NE), and the production of large DNA-based networks called neutrophil extracellular traps (NETs). Neutrophils are initially recruited and activated by cytokines and pathogen- and damage-associated molecular patterns, but little is known about how the physicochemical composition of the biomaterial affects their activation. This study aimed to understand how ablating neutrophil mediators (MPO, NE, NETs) affected macrophage phenotype in vitro and osseointegration in vivo. We discovered that NET formation is a crucial mediator of pro-inflammatory macrophage activation, and inhibition of NET formation significantly suppresses macrophage pro-inflammatory phenotype. Furthermore, reducing NET formation accelerated the inflammatory phase of healing and produced greater bone formation around the implanted biomaterial, suggesting that NETs are essential regulators of biomaterial integration. Our findings emphasize the importance of the neutrophil response to implanted biomaterials and highlight innate immune cells' regulation and amplification signaling during the initiation and resolution of the inflammatory phase of biomaterial integration. STATEMENT OF SIGNIFICANCE: Neutrophils are the most abundant immune cells in blood and are the first to be recruited to the injury/implantation site where they exert significant pro-inflammatory effects. This study aimed to understand how ablating neutrophil mediators affected macrophage phenotype in vitro and bone apposition in vivo. We found that NET formation is a crucial mediator of pro-inflammatory macrophage activation. Reducing NET formation accelerated the inflammatory phase of healing and produced greater appositional bone formation around the implanted biomaterial, suggesting that NETs are essential regulators of biomaterial integration.


Assuntos
Armadilhas Extracelulares , Titânio/farmacologia , Osteogênese , Neutrófilos , Citocinas/farmacologia , Materiais Biocompatíveis/farmacologia
5.
Acta Biomater ; 161: 285-297, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905954

RESUMO

Materials for craniofacial and orthopedic implants are commonly selected based on mechanical properties and corrosion resistance. The biocompatibility of these materials is typically assessed in vitro using cell lines, but little is known about the response of immune cells to these materials. This study aimed to evaluate the inflammatory and immune cell response to four common orthopedic materials [pure titanium (Ti), titanium alloy (TiAlV), 316L stainless steel (SS), polyetheretherketone (PEEK)]. Following implantation into mice, we found high recruitment of neutrophils, pro-inflammatory macrophages, and CD4+ T cells in response to PEEK and SS implants. Neutrophils produced higher levels of neutrophil elastase, myeloperoxidase, and neutrophil extracellular traps in vitro in response to PEEK and SS than neutrophils on Ti or TiAlV. Macrophages co-cultured on PEEK, SS, or TiAlV increased polarization of T cells towards Th1/Th17 subsets and decreased Th2/Treg polarization compared to Ti substrates. Although SS and PEEK are considered biocompatible materials, both induce a more robust inflammatory response than Ti or Ti alloy characterized by high infiltration of neutrophils and T cells, which may cause fibrous encapsulation of these materials. STATEMENT OF SIGNIFICANCE: Materials for craniofacial and orthopedic implants are commonly selected based on their mechanical properties and corrosion resistance. This study aimed to evaluate the immune cell response to four common orthopedic and craniofacial biomaterials: pure titanium, titanium-aluminum-vanadium alloy, 316L stainless steel, and PEEK. Our results demonstrate that while the biomaterials tested have been shown to be biocompatible and clinically successful, the inflammatory response is largely driven by chemical composition of the biomaterials.


Assuntos
Materiais Biocompatíveis , Titânio , Animais , Camundongos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Titânio/farmacologia , Titânio/química , Aço Inoxidável/química , Polímeros/farmacologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Cetonas/farmacologia , Cetonas/química , Ligas/farmacologia , Teste de Materiais , Propriedades de Superfície
6.
Biomaterials ; 289: 121797, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36156410

RESUMO

Biomaterial characteristics like surface roughness and wettability can determine the phenotype of macrophages following implantation. We have demonstrated that inhibiting Wnt ligand secretion abolishes macrophage polarization in vitro and in vivo; however, the role of canonical Wnt signaling in macrophage activation in response to physical and chemical biomaterial cues is unknown. The aim of this study was to understand whether canonical Wnt signaling affects the response of macrophages to titanium (Ti) surface roughness or wettability in vitro and in vivo. Activating canonical Wnt signaling increased expression of toll-like receptors and interleukin receptors and secreted pro-inflammatory cytokines and reduced anti-inflammatory cytokines on Ti, regardless of surface properties. Inhibiting canonical Wnt signaling reduced pro-inflammatory cytokines on all Ti surfaces and increased anti-inflammatory cytokines on rough or rough-hydrophilic Ti. In vivo, activating canonical Wnt signaling increased total macrophages, pro-inflammatory macrophages, and T cells and decreased anti-inflammatory macrophages on both smooth and rough-hydrophilic implants. Functionally, canonical Wnt activation increases pro-inflammatory macrophage response to cell and cell-extracellular matrix lysates. These results demonstrate that activating canonical Wnt signaling primes macrophages to a pro-inflammatory phenotype that affects their response to Ti implants in vitro and in vivo.


Assuntos
Titânio , Via de Sinalização Wnt , Anti-Inflamatórios/metabolismo , Materiais Biocompatíveis/química , Citocinas/metabolismo , Ligantes , Macrófagos/metabolismo , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
7.
Front Behav Neurosci ; 16: 910056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990727

RESUMO

When a maternal rat nurtures her pups, she relies on adequate resources to provide optimal care for her offspring. Accordingly, limited environmental resources may result in atypical maternal care, disrupting various developmental outcomes. In the current study, maternal Long-Evans rats were randomly assigned to either a standard resource (SR) group, provided with four cups of bedding and two paper towels for nesting material or a limited resource (LR) group, provided with a quarter of the bedding and nesting material provided for the SR group. Offspring were monitored at various developmental phases throughout the study. After weaning, pups were housed in same-sex dyads in environments with SRs for continued observations. Subsequent behavioral tests revealed a sex × resource interaction in play behavior on PND 28; specifically, LR reduced play attacks in males while LR increased play attacks in females. A sex × resource interaction was also observed in anxiety-related responses in the open field task with an increase in thigmotaxis in LR females and, in the social interaction task, females exhibited more external rears oriented away from the social target. Focusing on morphological variables, tail length measurements of LR males and females were shorter on PND 9, 16, and 21; however, differences in tail length were no longer present at PND 35. Following the behavioral assessments, animals were perfused at 56 days of age and subsequent immunohistochemical assays indicated increased glucocorticoid receptors in the lateral habenula of LR offspring and higher c-Fos immunoreactivity in the basolateral amygdala of SR offspring. Further, when tail vertebrae and tail tendons were assessed via micro-CT and hydroxyproline assays, results indicated increased trabecular separation, decreased bone volume fraction, and decreased connectivity density in bones, along with reduced collagen concentration in tendons in the LR animals. In sum, although the restricted resources only persisted for a brief duration, the effects appear to be far-reaching and pervasive in this early life stress animal model.

8.
Materialia (Oxf) ; 202021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34778733

RESUMO

OBJECTIVES: Smoking is a known contributor to the failure of dental implants. Despite a decline in cigarette use, the popularity of e-cigarettes has exploded. However, little is known about how e-cigarettes affect the biologic response to implants. This study examines the effect of e-cigarette aerosol mixtures (ecig-AM) on macrophage activation and osteoblastogenesis of mesenchymal stem cells (MSCs) in response to titanium (Ti) implant surfaces. METHODS: Ecig-AMs were prepared by bubbling aerosol through PBS. Human-derived MSCs or murine-derived macrophages were plated on smooth, rough-hydrophobic, or rough-hydrophilic Ti surfaces in media supplemented with ecig-AM. In macrophages, expression of inflammatory markers was measured by qPCR and macrophage immunophenotype characterized by flow cytometry after 24 hours of exposure. In MSCs, expression of osteogenic markers and inflammatory cytokines was measured by qPCR and ELISA, while alkaline phosphatase activity (ALP) was determined by colorimetric assay. RESULTS: Ecig-AM polarized primary macrophages into a pro-inflammatory state with higher effect on ecig-AM with flavorants and nicotine. Metabolic activity of MSCs decreased in a concentration dependent fashion and was stronger in ecig-AM containing nicotine. MSCs reduced expression of osteogenic markers in response to ecig-AM, but increased RANKL secretion, particularly at the highest ecig-AM concentrations. The effect of ecig-AM exposure was lessened when macrophages or MSCs were cultured on rough-hydrophilic substrates. SIGNIFICANCE: Ecig-AM activated macrophages into a pro-inflammatory phenotype and impaired MSC-to-osteoblast differentiation in response to Ti implant surfaces. These effects were potentiated by flavorants and nicotine, suggesting that e-cigarette use may compromise the osseointegration of dental implants.

9.
Acta Biomater ; 133: 58-73, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33882355

RESUMO

As the focus of implantable biomaterials has shifted from bioinert implants to bioactive designs, recent research has highlighted the complex interactions between cell physiologic systems and material properties, particularly physical cues. From the cells known to interact with implanted biomaterials, the response of the immune system has been a critical target of study recently. Here, we review studies characterizing the response of innate immune cells to various material cues, particularly of those at the surface of implanted materials.The innate immune system consists of cell types with various roles in inflammation. Neutrophils and macrophages serve both phagocytic and signaling roles, especially early in the inflammatory phase of biomaterial implantation. These cell types ultimately dictate the outcome of implants as chronic inflammation, fibrosis, or integration. Other cell types like dendritic cells, mast cells, natural killer cells, and innate lymphoid cells may also serve an immunomodulatory role in the biomaterial context. This review highlights recent advances in our understanding of the role of innate immunity in the response to implantable biomaterials as well as key mechanobiological findings in innate immune cells underpinning these advances. STATEMENT OF SIGNIFICANCE: This review highlights recent advances in the understanding of the role of innate immunity in the response to implantable biomaterials, especially in neutrophils and macrophages, as well as key mechanobiological findings in innate immune cells underpinning these advances. Here we discuss how physicochemical properties of biomaterials control innate immune cell behavior.


Assuntos
Materiais Biocompatíveis , Imunidade Inata , Linfócitos , Macrófagos , Próteses e Implantes
10.
Biomaterials ; 271: 120715, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33677375

RESUMO

Neutrophils predominate the early inflammatory response to tissue injury and implantation of biomaterials. Recent studies have shown that neutrophil activation can be regulated by mechanical cues such as stiffness or surface wettability; however, it is not known how neutrophils sense and respond to physical cues, particularly how they form neutrophil extracellular traps (NET formation). To examine this, we used polydimethylsiloxane (PDMS) substrates of varying physiologically relevant stiffness (0.2-32 kPa) and examined the response of murine neutrophils to untreated surfaces or to surfaces coated with various extracellular matrix proteins recognized by integrin heterodimers (collagen, fibronectin, laminin, vitronectin, synthetic RGD). Neutrophils on higher stiffness PDMS substrates had increased NET formation and higher secretion of pro-inflammatory cytokines and chemokines. Extracellular matrix protein coatings showed that fibronectin induced the most NET formation and this effect was stiffness dependent. Synthetic RGD peptides induced similar levels of NET formation and pro-inflammatory cytokine release than the full-length fibronectin protein. To determine if the observed NET formation in response to substrate stiffness required focal adhesion kinase (FAK) activity, which is down stream of integrin activation, FAK inhibitor PF-573228 was used. Inhibition of FAK using PF-573228 ablated the stiffness-dependent increase in NET formation and pro-inflammatory molecule secretion. These findings demonstrate that neutrophils regulate NET formation in response to physical and mechanical biomaterial cues and this process is regulated through integrin/FAK signaling.


Assuntos
Armadilhas Extracelulares , Animais , Adesão Celular , Proteínas da Matriz Extracelular , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Integrinas , Camundongos , Neutrófilos
11.
Clin Oral Implants Res ; 32(4): 487-497, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33502059

RESUMO

OBJECTIVES: Biomaterial implantation provokes an inflammatory response that controls integrative fate. M2 macrophages regulate the response to implants by resolving the inflammatory phase and recruiting progenitor cells to aid healing. We have previously shown that modified titanium (Ti) disks directly induce M2 macrophage polarization. The aim of this study was to examine macrophage response to commercially available Ti or Ti alloy implants with comparable roughness and varying hydrophilicity. MATERIAL AND METHODS: Eleven commercially available Ti (A-F) or Ti alloy (G-K) dental implants were examined in this study. Surface topography, chemistry, and hydrophilicity were characterized for each implant. To compare the immune response in vitro, human monocyte-derived macrophages were seeded on implants and secreted pro- and anti-inflammatory proteins measured. To evaluate the inflammatory response in vivo, mice were subcutaneously instrumented with clinical implants, and implant adherent macrophage populations were characterized by flow cytometry. RESULTS: Macrophages on hydrophobic Implant C produced the highest level of pro-inflammatory proteins in vitro. In contrast, hydrophilic Implant E produced the second-highest pro-inflammatory response. Implants F and K, both hydrophilics, produced the highest anti-inflammatory protein secretions. Likewise, pro-inflammatory CD80hi macrophages predominated in vivo on implants C and E, and M2 CD206 + macrophages predominated on implants F and K. CONCLUSIONS: These findings show that hydrophilicity alone is insufficient to predict the anti-inflammatory effect on macrophage polarization and that other properties-surface composition or topography-determine immune modulation. This in vivo model may be a useful screening method to compare the immunomodulatory response to clinical implants of disparate geometry or size.


Assuntos
Implantes Dentários , Animais , Ativação de Macrófagos , Macrófagos , Camundongos , Propriedades de Superfície , Titânio
12.
J Biomed Mater Res B Appl Biomater ; 109(7): 1017-1028, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33252193

RESUMO

This study reports the differences in the protein composition of salivary pellicles formed under in situ conditions on two Titanium (Ti) surfaces, with different roughness and wettability. Smooth pretreatment Ti surfaces (Ti-PT) with an average roughness (Ra) of 0.45 µm and a water contact angle (WCA) of 92.4°, as well as a more rough sandblasted, large grit, acid-etched treatment Ti surfaces (Ti-SLA) with a Ra of 3.3 µm and WCA of 131.8°, were tested. The salivary pellicles were quantitatively analyzed by bicinchoninic acid assays, and the protein identification was performed by Nano-LC-MS/MS (nano mass spectrometry). Protein levels of 2.5, and 9.1 µg/ml were quantified from the detached salivary pellicle formed on the Ti-PT and Ti-SLA surfaces, respectively. Using Nano-LC-MS/MS, a total of 597 proteins were identified on all the substrates tested; 43 proteins were identified only on the Ti-PT, and 226 proteins were adsorbed solely on the Ti-SLA substrates. The physicochemical characteristics of the Ti implant surfaces modified the amount and the identity of the salivary proteome of the pellicles formed, confirming the high selectivity of the protein pellicle formed on a surface once is exposed in the oral cavity.


Assuntos
Película Dentária/química , Próteses e Implantes , Titânio/química , Molhabilidade
13.
Biomaterials ; 243: 119920, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32179303

RESUMO

Macrophages are among the first cells to interact with biomaterials and ultimately determine their integrative fate. Biomaterial surface characteristics like roughness and hydrophilicity can activate macrophages to an anti-inflammatory phenotype. Wnt signaling, a key cell proliferation and differentiation pathway, has been associated with dysregulated macrophage activity in disease. However, the role Wnt signaling plays in macrophage activation and response to biomaterials is unknown. The aim of this study was to characterize the regulation of Wnt signaling in macrophages during classical pro- and anti-inflammatory polarization and in their response to smooth, rough, and rough-hydrophilic titanium (Ti) surfaces. Peri-implant Wnt signaling in macrophage-ablated (MaFIA) mice instrumented with intramedullary Ti rods was significantly attenuated compared to untreated controls. Wnt ligand mRNA were upregulated in a surface modification-dependent manner in macrophages isolated from the surface of Ti implanted in C57Bl/6 mice. In vitro, Wnt mRNAs were regulated in primary murine bone-marrow-derived macrophages cultured on Ti in a surface modification-dependent manner. When macrophageal Wnt secretion was inhibited, macrophage sensitivity to both physical and biological stimuli was abrogated. Loss of macrophage-derived Wnts also impaired recruitment of mesenchymal stem cells and T-cells to Ti implants in vivo. Finally, inhibition of integrin signaling decreased surface-dependent upregulation of Wnt genes. These results suggest that Wnt signaling regulates macrophage response to biomaterials and that macrophages are an important source of Wnt ligands during inflammation and healing.


Assuntos
Materiais Biocompatíveis , Ativação de Macrófagos , Animais , Macrófagos , Camundongos , Propriedades de Superfície , Titânio , Via de Sinalização Wnt
14.
Biomater Sci ; 8(8): 2289-2299, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32163073

RESUMO

Biomaterial implantation triggers an immune response initially predominated by neutrophils, which activate an inflammatory cascade by producing cytokines, enzymes, immune cell recruitment chemokines, and DNA fiber networks called neutrophil extracellular traps (NETs). While the role of neutrophils has been studied extensively in infection, little is known of their role in the response to biomaterials, in this case titanium (Ti) implants. Furthermore, while implant surface modifications have been shown to attenuate pro-inflammatory polarization in other immune cells, their effects on neutrophil behavior is unknown. The aim of this study was to characterize the neutrophil response to Ti surface topography and hydrophilicity and understand how the products of biomaterial-induced neutrophil activation alters macrophage polarization. Murine neutrophils were isolated by density gradient centrifugation and plated on smooth, rough, and rough hydrophilic (rough-hydro) Ti surfaces. Neutrophils on rough-hydro Ti decreased pro-inflammatory cytokine and enzyme production as well as decreased NET formation compared to neutrophils on smooth and rough Ti. Conditioned media (CM) from neutrophils on smooth Ti enhanced pro-inflammatory macrophage polarization compared to CM from neutrophils on rough or rough-hydro Ti; pretreatment of neutrophils with a pharmacological NETosis inhibitor impaired this macrophage stimulation. Finally, co-culture of neutrophils and macrophages on Ti surfaces induced pro-inflammatory macrophage polarization compared to macrophages alone on surfaces, but this effect was ablated when neutrophils were pretreated with the NETosis inhibitor. These findings demonstrate that neutrophils are sensitive to changes in biomaterial surface properties and exhibit differential activation in response to Ti surface cues. Additionally, inhibition of NETosis enhanced anti-inflammatory macrophage polarization, suggesting NETosis as a possible therapeutic target for enhancing implant integration.


Assuntos
Neutrófilos/fisiologia , Titânio/química , Animais , Materiais Biocompatíveis , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Armadilhas Extracelulares , Interações Hidrofóbicas e Hidrofílicas , Inflamação , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Propriedades de Superfície
15.
Dent Mater ; 35(1): 176-184, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30509481

RESUMO

OBJECTIVES: Roughened dental implants promote mesenchymal stem cell (MSCs) osteoblastic differentiation, and hydrophilic modifications induce anti-inflammatory macrophages activation. While the effect of different surface modifications on osseointegration of commercial dental implants have been compared in vivo and clinically, the initial cellular response to these modifications often overlooked. We aimed to characterize the macrophage inflammatory response and MSC osteogenesis across different commercially available implants in vitro. METHODS: Six commercially available rough implants [OsseoSpeed™ (Astra-Tech™, Implant A); Osseotite® (Biomet 3i™, Implant B); TiUnite™ (Nobel-Biocare®, Implant C); Ti-SLA®, (Implant D), Roxolid® (RXD-SLA, Implant E), RXD-SLActive® (Implant F) (Straumann®)] were examined. Macrophages and MSCs were seeded directly on implants and cultured in custom vials. mRNA and protein levels of pro- (IL1B, IL6, IL17A, CXCL10, TNFa) and anti- (IL4, IL10, TGFB1) inflammatory markers were measured after 24 and 48h in macrophages. Osteoblastic differentiation of MSCs was assessed after seven days by alkaline phosphatase activity, osteocalcin, and angiogenic, osteogenic, and inflammatory markers by ELISA and qPCR (n=6/variable, ANOVA, post hoc Tukey HSD with α=0.05). RESULTS: Hydrophilic implant F induced the highest level of osteogenic factor released from MSCs and anti-inflammatory factors from macrophages with the lowest level of pro-inflammatory factors. Alternatively, implants A and C supported lower levels of osteogenesis and increased secretion of pro-inflammatory factors. SIGNIFICANCE: In this study, we successfully evaluated differences in cell response to commercially available clinical implants using an in vitro model. Data from this model suggest that not all surface modification procedures generate the same cell response.


Assuntos
Implantes Dentários , Osteogênese , Osseointegração , Propriedades de Superfície , Titânio
16.
J Neurosurg Pediatr ; 22(6): 620-626, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215585

RESUMO

OBJECTIVECranial suture patterning and development are highly regulated processes that are not entirely understood. While studies have investigated the differential gene expression for different sutures, little is known about gene expression changes during suture fusion. The aim of this study was to examine gene expression in patent, fusing, and fused regions along sagittal suture specimens in nonsyndromic craniosynostosis patients.METHODSSagittal sutures were collected from 7 patients (average age 4.5 months) who underwent minimally invasive craniotomies at the Children's Hospital of Richmond at VCU under IRB approval. The sutures were analyzed using micro-CT to evaluate patency. The areas were classified as open, fusing, or fused and were harvested, and mRNA was isolated. Gene expression for bone-related proteins, osteogenic and angiogenic factors, transforming growth factor-ß (TGF-ß) superfamily, and Wnt signaling was analyzed using quantitative polymerase chain reaction and compared with normal sutures collected from fetal demise tissue (control).RESULTSMicro-CT demonstrated that there are variable areas of closure along the length of the sagittal suture. When comparing control samples to surgical samples, there was a significant difference in genes for Wnt signaling, TGF-ß, angiogenic and osteogenic factors, bone remodeling, and nuclear rigidity in mRNA isolated from the fusing and fused areas of the sagittal suture compared with patent areas (p < 0.05).CONCLUSIONSIn nonsyndromic sagittal craniosynostosis, the affected suture has variable areas of being open, fusing, and fused. These specific areas have different mRNA expression. The results suggest that BMP-2, FGFR3, and several other signaling pathways play a significant role in the regulation of suture fusion as well as in the maintenance of patency in the normal suture.


Assuntos
Suturas Cranianas/metabolismo , Craniossinostoses/genética , Regulação da Expressão Gênica no Desenvolvimento , Osteogênese/genética , Suturas Cranianas/cirurgia , Craniossinostoses/metabolismo , Craniossinostoses/cirurgia , Craniotomia , Feminino , Humanos , Lactente , Masculino , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
17.
Biomaterials ; 182: 202-215, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30138783

RESUMO

Successful biomaterial implantation can be achieved by controlling the activation of the immune system. The innate immune system is typically the focus on synthetic material compatibility, but this study shows an effect of surface properties in the innate as well as the adaptive systems. These studies look at how macrophages respond to the implanted materials by releasing factors to regulate the microenvironment and recruit additional cells. Our research demonstrates how macrophage response to material surface properties can create changes in the adaptive immune response by altering T-helper cell populations and stem cell recruitment. Titanium (Ti) implants of varying wettability (rough, and rough-hydrophilic) were placed in the femur of 10-week-old male C57Bl/6, or macrophage ablated clodronate liposome injected and transgenic MaFIA (C57BL/6-Tg(Csf1r-EGFP-NGFR/FKBP1A/TNFRSF6)2Bck/J) mice. The microenvironment surrounding Ti implants was assessed using custom PCR arrays at 3 and 7 days following implantation. Changes in specific T-helper, macrophage and stem cell populations were evaluated locally at the implant surface and systemically in the contralateral leg bone marrow and spleen by flow cytometry at 1, 3 and 7 days. Macrophage importance in T-helper and stem cell population changes with metallic surfaces was examined in both in vitro and in vivo with macrophage ablation models. We demonstrate that surface modifications applied to titanium implants to increase surface roughness and wettability can polarize the adaptive immune response towards a Th2, pro-wound healing phenotype, leading to faster resolution of inflammation and increased stem cell recruitment around rough hydrophilic implants with macrophages present.


Assuntos
Materiais Biocompatíveis/química , Macrófagos/citologia , Células-Tronco Mesenquimais/citologia , Linfócitos T Auxiliares-Indutores/citologia , Titânio/química , Imunidade Adaptativa , Animais , Células Cultivadas , Técnicas de Cocultura , Interações Hidrofóbicas e Hidrofílicas , Inflamação/imunologia , Macrófagos/imunologia , Masculino , Células-Tronco Mesenquimais/imunologia , Camundongos Endogâmicos C57BL , Próteses e Implantes , Propriedades de Superfície , Linfócitos T Auxiliares-Indutores/imunologia , Molhabilidade
18.
Biol Sex Differ ; 9(1): 30, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970177

RESUMO

BACKGROUND: Osseointegration is dependent on the implant surface, surrounding bone quality, and the systemic host environment, which can differ in male and female patients. Titanium (Ti) implants with microstructured surfaces exhibit greater pullout strength when compared to smooth-surfaced implants and exhibit enhanced osteogenic cellular responses in vitro. Previous studies showed that 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] has a greater effect on rat osteoblast differentiation on microstructured Ti compared to smooth Ti surfaces and tissue culture polystyrene (TCPS). The stimulatory effect of 17ß-estradiol (E2) on differentiation is observed in female osteoblasts on micro-rough Ti, but it is not known if male osteoblasts behave similarly in response to E2 and microtopography. This study assessed whether human male and female osteoblasts exhibit sex-specific differences in response to E2 and 1α,25(OH)2D3 when cultured on microstructured Ti surfaces. METHODS: Osteoblasts from three male and three female human donors were cultured on Ti discs with varying surface profiles: a smooth pretreatment (PT), a coarse grit-blasted/acid-etched (SLA), and an SLA surface having undergone modification in a nitrogen environment and stored in saline to maintain hydrophilicity (modSLA). Cells cultured on these surfaces were treated with E2 or 1α,25(OH)2D3. RESULTS: Male and female human osteoblasts responded similarly to microstructure although there were donor-specific differences; cell number decreased, and osteocalcin (OCN), osteoprotegerin (OPG), and latent and active transforming growth factor 1 increased on SLA and modSLA compared to TCPS. Female osteoblasts had higher alkaline phosphatase activity and OCN production than male counterparts but produced less OPG. Both sexes responded similarly to 1α,25(OH)2D3. E2 treatment reduced cell number and increased osteoblast differentiation and factor production only in female cells. CONCLUSIONS: Male and female human osteoblasts respond similarly to microstructure and 1α,25(OH)2D3 but exhibit sexual dimorphism in substrate-dependent responses to E2. E2 affected female osteoblasts, suggesting that signaling is sex-specific and surface-dependent. Donor osteoblasts varied in response, demonstrating the need to test multiple donors when examining human samples. Understanding how male and female cells respond to orthopedic biomaterials will enable greater predictability post-implantation as well as therapies that are more patient-specific.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Osteoblastos/efeitos dos fármacos , Caracteres Sexuais , Titânio , Materiais Biocompatíveis , Células Cultivadas , Humanos , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteoprotegerina/metabolismo , Propriedades de Superfície , Vitamina D/análogos & derivados , Vitamina D/farmacologia
19.
Sci Rep ; 8(1): 8588, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872092

RESUMO

Successful osseointegration of an endosseous implant involves migration and differentiation of mesenchymal stem cells (MSCs) on the implant surface. Micro-structured, hydrophilic titanium surfaces direct MSCs to undergo osteoblastic differentiation in vitro, in the absence of media additives commonly used in cultures grown on tissue culture polystyrene (TCPS). This process involves non-canonical Wnt5a, in contrast to canonical Wnt3a typically credited with osteoblastic differentiation on TCPS. Wnt proteins have been implicated in morphological development and tissue patterning, suggesting that additional Wnts may participate. Here, we demonstrate that Wnt11 is a mediator of osteoblast commitment of MSCs, and increases in a surface-roughness dependent manner. Experiments using cells silenced for Wnt11 indicate that cross-talk between Wnt5a and Wnt11 occurs. Wnt11 potentially acts upstream to Wnt5a, increasing Wnt5a expression and factors associated with osteogenesis. Thus, Wnt11 contributes to peri-implant bone formation distal to the implant surface through a heavily regulated signaling cascade of autocrine/paracrine proteins.


Assuntos
Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Titânio/química , Proteínas Wnt/genética , Células Cultivadas , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Interferência de RNA , Propriedades de Superfície , Proteínas Wnt/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
20.
PLoS One ; 12(9): e0185729, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957438

RESUMO

Since electronic cigarette (ECIG) introduction to American markets in 2007, vaping has surged in popularity. Many, including women of reproductive age, also believe that ECIG use is safer than traditional tobacco cigarettes and is not hazardous when pregnant. However, there are few studies investigating the effects of ECIG exposure on the developing embryo and nothing is known about potential effects on craniofacial development. Therefore, we have tested the effects of several aerosolized e-cigarette liquids (e-cigAM) in an in vivo craniofacial model, Xenopus laevis, as well as a mammalian neural crest cell line. Results demonstrate that e-cigAM exposure during embryonic development induces a variety of defects, including median facial clefts and midface hypoplasia in two of e-cigAMs tested e-cigAMs. Detailed quantitative analyses of the facial morphology revealed that nicotine is not the main factor in inducing craniofacial defects, but can exacerbate the effects of the other e-liquid components. Additionally, while two different e-cigAMs can have very similar consequences on facial appearances, there are subtle differences that could be due to the differences in e-cigAM components. Further assessment of embryos exposed to these particular e-cigAMs revealed cranial cartilage and muscle defects and a reduction in the blood supply to the face. Finally, the expression of markers for vascular and cartilage differentiation was reduced in a mammalian neural crest cell line corroborating the in vivo effects. Our work is the first to show that ECIG use could pose a potential hazard to the developing embryo and cause craniofacial birth defects. This emphasizes the need for more testing and regulation of this new popular product.


Assuntos
Aerossóis/toxicidade , Anormalidades Craniofaciais/induzido quimicamente , Sistemas Eletrônicos de Liberação de Nicotina , Crista Neural/efeitos dos fármacos , Xenopus laevis/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glicerol/toxicidade , Mamíferos , Crista Neural/citologia , Nicotina/toxicidade , Propilenoglicol/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA