Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Inflamm Bowel Dis ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300738

RESUMO

BACKGROUND: Anti-Cluster of differentiation (CD)-40-induced colitis, driven by innate inflammatory responses in the intestine, is a potent animal model exhibiting IBD pathophysiology including diarrhea. However, the ion transport basis of diarrhea and some key mucosal pathways (Paneth cells, stem cell niche, and mechanosensory) in this model have not been investigated. METHODS: Mucosal scrapings and intestinal tissue from control and CD40 antibody (150 µg) treated Rag2-/- mice were examined for gut inflammation, Paneth cell numbers, expression of key transporters, tight/adherens junction proteins, stem cell niche, and mechanosensory pathway via hematoxylin and eosin staining, quantitative polymerase chain reaction, and western blotting. RESULTS: Compared with control, anti-CD40 antibody treatment resulted in a significant loss of body weight (P < .05) and diarrhea at day 3 postinjection. Distal colonic tissues of anti-CD40 mice exhibited increased inflammatory infiltrates, higher claudin-2 expression, and appearance of Paneth cell-like structures indicative of Paneth cell metaplasia. Significantly reduced expression (P < .005) of downregulated in adenoma (key Cl- transporter), P-glycoprotein/multidrug resistantance-1 (MDR1, xenobiotic transporter), and adherens junction protein E-cadherin (~2-fold P < .05) was also observed in the colon of anti-CD40 colitis mice. Interestingly, there were also marked alterations in the stem cell markers and upregulation of the mechanosensory YAP-TAZ pathway, suggesting the activation of alternate regeneration pathway post-tissue injury in this model. CONCLUSION: Our data demonstrate that the anti-CD40 colitis model shows key features of IBD observed in the human disease, hence making it a suitable model to investigate the pathophysiology of ulcerative colitis (UC).


Our studies demonstrate the ion transport basis of diarrhea, downregulation of MDR1 and E-cadherin, Paneth cell metaplasia, and induction of claudin-2 and mechanosensory pathway in anti-CD40 colitis (innate immune-based model of IBD), similar to the human disease.

2.
Pediatr Res ; 95(3): 641-646, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37833533

RESUMO

BACKGROUND: Osteopontin (OPN) is an important breastmilk protein involved in infant intestinal, immunological, and brain development. However, little is known about how common milk pasteurization and storage techniques affect this important bioactive protein. METHODS: Human milk osteopontin concentration was measured in single-donor fresh (n = 1) or frozen (n = 20) breastmilk, pooled Holder-pasteurized donor breastmilk (n = 11), and a shelf-stable (retort pasteurized) breastmilk product (n = 2) by ELISA. Single-donor breastmilk samples were subjected to pasteurization and/or freezing before measuring osteopontin concentrations. RESULTS: Holder pasteurization of breastmilk resulted in an ∼50% decrease in osteopontin concentration within single-donor samples. Breastmilk from mothers of preterm infants trended toward higher osteopontin concentration than mothers of term infants; however, samples from preterm mothers experienced greater osteopontin degradation upon pasteurization. A commercial breastmilk product that underwent retort pasteurization had lower osteopontin concentration than a Holder-pasteurized pooled breastmilk product. Finally, freezing breastmilk prior to Holder pasteurization resulted in less osteopontin degradation than Holder pasteurization prior to freezing. CONCLUSIONS: Commonly used breastmilk pasteurization and storage techniques, including freezing and Holder pasteurization, decrease the concentration of the bioactive protein osteopontin in human breastmilk. Holder pasteurization reduced osteopontin concentration by an average of 63%, while freezing resulted in an 8-12% decrease. IMPACT: Pasteurization of human breastmilk significantly decreases the concentration of the bioactive protein osteopontin. Use of both pasteurization and freezing techniques for breastmilk preservation results in greater loss of osteopontin. This study presents for the first time an analysis of osteopontin concentrations in single-donor pasteurized milk samples.


Assuntos
Leite Humano , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Osteopontina , Pasteurização/métodos
3.
Infect Immun ; 91(11): e0032223, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37800916

RESUMO

One of the major contributors to child mortality in the world is diarrheal diseases, with an estimated 800,000 deaths per year. Many pathogens are causative agents of these illnesses, including the enteropathogenic or enterohemorrhagic forms of Escherichia coli. These bacteria are characterized by their ability to cause attaching and effacing lesions in the gut mucosa. Although much has been learned about the pathogenicity of these organisms and the immune response against them, the role of the intestinal microbiota during these infections is not well characterized. Infection of mice with E. coli requires pre-treatment with antibiotics in most mouse models, which hinders the study of the microbiota in an undisturbed environment. Using Citrobacter rodentium as a murine model for attaching and effacing bacteria, we show that C57BL/6 mice deficient in granzyme B expression are highly susceptible to severe disease caused by C. rodentium infection. Although a previous publication from our group shows that granzyme B-deficient CD4+ T cells are partially responsible for this phenotype, in this report, we present data demonstrating that the microbiota, in particular members of the order Turicibacterales, have an important role in conferring resistance. Mice deficient in Turicibacter sanguinis have increased susceptibility to severe disease. However, when these mice are co-housed with resistant mice or colonized with T. sanguinis, susceptibility to severe infection is reduced. These results clearly suggest a critical role for this commensal in the protection against enteropathogens.


Assuntos
Infecções por Enterobacteriaceae , Escherichia coli , Criança , Humanos , Animais , Camundongos , Citrobacter rodentium/genética , Granzimas , Infecções por Enterobacteriaceae/microbiologia , Camundongos Endogâmicos C57BL , Bactérias
4.
bioRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163036

RESUMO

One of the major contributors to child mortality in the world is diarrheal diseases, with an estimated 800,000 deaths per year. Many pathogens are causative agents of these illnesses, including the enteropathogenic (EPEC) or enterohemorrhagic (EHEC) forms of Escherichia coli. These bacteria are characterized by their ability to cause attaching and effacing lesions in the gut mucosa. Although much has been learned about the pathogenicity of these organisms and the immune response against them, the role of the intestinal microbiota during these infections is not well characterized. Infection of mice with E. coli requires pre-treatment with antibiotics in most mouse models, which hinders the study of the microbiota in an undisturbed environment. Using Citrobacter rodentium as a murine model for attaching and effacing bacteria, we show that C57BL/6 mice deficient in granzyme B expression are highly susceptible to severe disease caused by C. rodentium infection. Although a previous publication from our group shows that granzyme B-deficient CD4+ T cells are partially responsible for this phenotype, in this report we present data demonstrating that the microbiota, in particular members of the order Turicibacterales, have an important role in conferring resistance. Mice deficient in Turicibacter sanguinis have increased susceptibility to severe disease. However, when these mice are co-housed with resistant mice, or colonized with T. sanguinis, susceptibility to severe infection is reduced. These results clearly suggest a critical role for this commensal in the protection against entero-pathogens.

5.
Mucosal Immunol ; 14(5): 1088-1099, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34183776

RESUMO

CD4+ T cell activation and differentiation are important events that set the stage for proper immune responses. Many factors are involved in the activation and differentiation of T cells, and these events are tightly controlled to prevent unwanted and/or exacerbated immune responses that may harm the host. It has been well-documented that granzyme B, a potent serine protease involved in cell-mediated cytotoxicity, is readily expressed by certain CD4+ T cells, such as regulatory T cells and CD4+CD8αα+ intestinal intraepithelial lymphocytes, both of which display cytotoxicity associated with granzyme B. However, because not all CD4+ T cells expressing granzyme B are cytotoxic, additional roles for this protease in CD4+ T cell biology remain unknown. Here, using a combination of in vivo and in vitro approaches, we report that granzyme B-deficient CD4+ T cells display increased IL-17 production. In the adoptive transfer model of intestinal inflammation, granzyme B-deficient CD4+ T cells triggered a more rapid disease onset than their WT counterparts, and presented a differential transcription profile. Similar results were also observed in granzyme B-deficient mice infected with Citrobacter rodentium. Our results suggest that granzyme B modulates CD4+ T cell differentiation, providing a new perspective into the biology of this enzyme.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Suscetibilidade a Doenças , Granzimas/genética , Interleucina-17/biossíntese , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Animais , Biomarcadores , Diferenciação Celular/imunologia , Transplante de Células , Citocinas/biossíntese , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Granzimas/metabolismo , Reconstituição Imune , Imunofenotipagem , Ativação Linfocitária , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
6.
Crit Rev Immunol ; 41(4): 23-38, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35381141

RESUMO

The intestinal epithelium is constantly exposed to a myriad of antigenic stimuli derived from commensals, food particles and pathogens present in the lumen of the intestines. This complex environment requires a similarly complex immune system capable of preventing exacerbated responses against food particles and commensals, while at the same time eliminating potential pathogens. These functions are accomplished in part by the intraepithelial lymphocyte (IEL) compartment. IELs are a diverse group of immune cells that primarily reside in between intestinal epithelial cells, maintaining an intimate association with these cells. IELs are a diverse population of cells: some of them express a T cell receptor (TCR), while others do not, and within TCR+ and TCR- IELs there are many IEL subpopulations that represent different developmental pathways and functions. In this review, we will focus on "unconventional" T cells present in the intestinal epithelium, in particular TCRγδ+, TCRαß+CD4+CD8αα+, and TCRαß+CD8αα+ IELs. We will discuss their development and potential functions both in humans and in mice.


Assuntos
Linfócitos Intraepiteliais , Animais , Antígenos CD8/metabolismo , Humanos , Intestinos , Linfócitos Intraepiteliais/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
7.
J Immunol ; 204(7): 1968-1981, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32102904

RESUMO

Intestinal intraepithelial lymphocytes (IEL) comprise a diverse population of cells residing in the epithelium at the interface between the intestinal lumen and the sterile environment of the lamina propria. Because of this anatomical location, IEL are considered critical components of intestinal immune responses. Indeed, IEL are involved in many different immunological processes, ranging from pathogen control to tissue stability. However, despite their critical importance in mucosal immune responses, very little is known about the homeostasis of different IEL subpopulations. The phosphoprotein osteopontin is important for critical physiological processes, including cellular immune responses, such as survival of Th17 cells and homeostasis of NK cells among others. Because of its impact in the immune system, we investigated the role of osteopontin in the homeostasis of IEL. In this study, we report that mice deficient in the expression of osteopontin exhibit reduced numbers of the IEL subpopulations TCRγδ+, TCRß+CD4+, TCRß+CD4+CD8α+, and TCRß+CD8αα+ cells in comparison with wild-type mice. For some IEL subpopulations, the decrease in cell numbers could be attributed to apoptosis and reduced cell division. Moreover, we show in vitro that exogenous osteopontin stimulates the survival of murine IEL subpopulations and unfractionated IEL derived from human intestines, an effect mediated by CD44, a known osteopontin receptor. We also show that iCD8α IEL but not TCRγδ+ IEL, TCRß+ IEL, or intestinal epithelial cells, can promote survival of different IEL populations via osteopontin, indicating an important role for iCD8α cells in the homeostasis of IEL.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Homeostase/imunologia , Intestinos/imunologia , Linfócitos Intraepiteliais/imunologia , Osteopontina/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Epitélio/imunologia , Feminino , Humanos , Receptores de Hialuronatos/imunologia , Células Matadoras Naturais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Th17/imunologia
8.
Dig Dis Sci ; 65(6): 1700-1709, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31741140

RESUMO

BACKGROUND: Diarrhea, a major pathological hallmark of inflammatory bowel disease, is characterized by a significant reduction in the expression and function of key intestinal ion transporters. The adoptive naïve CD4+ T cell transfer colitis is an immune-based, chronic colitis mouse model which resembles human Crohn's disease. Although mice with T cell transfer colitis demonstrate diarrhea, the ion transporter basis of this phenotype has not been explored. AIMS/METHODS: In the current studies, we aimed to determine the mRNA and protein levels of the key NaCl transporters DRA and NHE3 along with the mRNA expression of other transporters in the inflamed intestine. RESULTS: Naïve CD4+ T cells, transferred to Rag2 knockout mice, induced severe colonic inflammation characterized by histological damage and increased mRNA levels of cytokines in the colon with no effect in the ileum. Diarrheal phenotype was a key feature of the excised colons of mice where loose stools were evident. Our results demonstrated that the key chloride transporter DRA, mRNA, and protein levels were significantly reduced in the inflamed colon. However, expression of the key sodium hydrogen exchanger NHE3 was unaffected. The mRNA expression of other important transporters was also determined; in this regard, the sodium channel ENACα and the monocarboxylate transporters MCT1 and SMCT1 mRNA levels were also significantly lower compared to control mice. However, CFTR mRNA was not altered in the colon or ileum. CONCLUSIONS: The studies conducted herein for the first time demonstrate the downregulation of important intestinal ion transporters in proximal and distal colon in T cell transfer colitis mouse model, providing valuable evidence for the ion transporter basis of diarrhea in this chronic model of inflammation.


Assuntos
Transferência Adotiva , Colite/etiologia , Diarreia/etiologia , Transporte de Íons/fisiologia , Linfócitos T , Sistemas de Transporte de Aminoácidos , Animais , Antiporters , Colo/patologia , Proteínas de Ligação a DNA , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Transportadores de Sulfato , Simportadores
9.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31383743

RESUMO

Interleukin-21 (IL-21), a cytokine produced by many subsets of activated immune cells, is critical for driving inflammation in several models. Using Helicobacter pylori infection as a model for chronic mucosal infection, we previously published that IL-21 is required for the development of gastritis in response to infection. Concomitant with protection from chronic inflammation, H. pylori-infected IL-21-/- mice exhibited limited Th1 and Th17 responses in their gastric mucosa. Here we report that H. pylori-infected IL-21-/- mice express significantly higher levels of IL-17A than H. pylori-infected wild-type (WT) mice in the Peyer's patches and mesenteric lymph nodes. This led us to hypothesize that IL-21 may indirectly regulate H. pylori-specific T cell responses by controlling dendritic cell (DC) functions in mucosa-associated lymphoid tissue. It was found that IL-21 treatment reduced the ability of dendritic cells to produce proinflammatory cytokines in response to H. pylori While H. pylori increased the expression of costimulatory proteins on DCs, IL-21 reduced the expression of CD40 in the presence of H. pylori Also, Th17 recall responses were intact when DCs were used as antigen-presenting cells in the presence of IL-21, but IL-21 did impact the ability of DCs to induce antigen-specific proliferation. These data suggest that IL-21, while proinflammatory in most settings, downregulates the proinflammatory cytokine microenvironment through modulating the cytokine expression of DCs, indirectly modifying IL-17A expression. Understanding how these proinflammatory cytokines are regulated will advance our understanding of how and why H. pylori infection may be tolerated in some individuals while it causes gastritis, ulcers, or cancer in others.


Assuntos
Citocinas/metabolismo , Células Dendríticas/fisiologia , Helicobacter pylori/fisiologia , Interleucina-17/metabolismo , Interleucinas/metabolismo , Linfócitos T/metabolismo , Animais , Citocinas/genética , Células Dendríticas/microbiologia , Feminino , Regulação da Expressão Gênica/fisiologia , Infecções por Helicobacter , Interleucina-17/genética , Interleucinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nódulos Linfáticos Agregados/metabolismo
10.
PLoS One ; 14(7): e0215883, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291255

RESUMO

Innate CD8αα+ cells, also referred to as iCD8α cells, are TCR-negative intraepithelial lymphocytes (IEL) possessing cytokine and chemokine profiles and functions related to innate immune cells. iCD8α cells constitute an important source of osteopontin in the intestinal epithelium. Osteopontin is a pleiotropic cytokine with diverse roles in bone and tissue remodeling, but also has relevant functions in the homeostasis of immune cells. In this report, we present evidence for the role of iCD8α cells in the homeostasis of TCR-negative NKp46+NK1.1+ IEL (ILC1-like). We also show that the effect of iCD8α cells on ILC1-like IEL is enhanced in vitro by osteopontin. We show that in the absence of iCD8α cells, the number of NKp46+NK1.1+ IEL is significantly reduced. These ILC1-like cells are involved in intestinal pathogenesis in the anti-CD40 mouse model of intestinal inflammation. Reduced iCD8α cell numbers results in a milder form of intestinal inflammation in this disease model, whereas treatment with osteopontin increases disease severity. Collectively, our results suggest that iCD8α cells promote survival of NKp46+NK1.1+ IEL, which significantly impacts the development of intestinal inflammation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Mucosa Intestinal/imunologia , Linfócitos Intraepiteliais/imunologia , Animais , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Sobrevivência Celular/imunologia , Gastroenterite/etiologia , Gastroenterite/imunologia , Gastroenterite/patologia , Homeostase/imunologia , Imunidade Inata , Mucosa Intestinal/patologia , Linfócitos Intraepiteliais/metabolismo , Linfócitos Intraepiteliais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Osteopontina/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
11.
J Immunol ; 200(7): 2235-2244, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555677

RESUMO

The intestine is continuously exposed to commensal microorganisms, food, and environmental agents and also serves as a major portal of entry for many pathogens. A critical defense mechanism against microbial invasion in the intestine is the single layer of epithelial cells that separates the gut lumen from the underlying tissues. The barrier function of the intestinal epithelium is supported by cells and soluble factors of the intestinal immune system. Chief among them are intestinal intraepithelial lymphocytes (iIELs), which are embedded in the intestinal epithelium and represent one of the single largest populations of lymphocytes in the body. Compared with lymphocytes in other parts of the body, iIELs exhibit unique phenotypic, developmental, and functional properties that reflect their key roles in maintaining the intestinal epithelial barrier. In this article, we review the biology of iIELs in supporting normal health and how their dysregulation can contribute to disease.


Assuntos
Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Linfócitos Intraepiteliais/imunologia , Junções Íntimas/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Homeostase , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/citologia , Linfócitos Intraepiteliais/citologia , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética
12.
Trends Immunol ; 39(4): 264-275, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29221933

RESUMO

Intestinal intraepithelial lymphocytes (IELs) are a large and diverse population of lymphoid cells that reside between the intestinal epithelial cells (IECs) that form the intestinal mucosal barrier. Although IEL biology has traditionally focused on T cells, recent studies have identified several subsets of T cell receptor (TCR)-negative IELs with intriguing properties. New insight into the development, homeostasis, and functions of distinct IEL subsets has recently been provided. Additional studies have revealed intricate interactions between different IEL subsets, reciprocal interactions between IELs and IECs, and communication of IELs with immune cells that reside outside the intestinal epithelium. We review here sentinel functions of IELs in the maintenance of the mucosal barrier integrity, as well as how dysregulated IEL responses can contribute to pathology.


Assuntos
Inflamação/imunologia , Mucosa Intestinal/fisiologia , Linfócitos Intraepiteliais/imunologia , Animais , Comunicação Celular , Diferenciação Celular , Homeostase , Humanos , Imunidade nas Mucosas
13.
Immun Inflamm Dis ; 5(2): 109-123, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28474503

RESUMO

INTRODUCTION: Immune responses in the intestines require tight regulation to avoid uncontrolled inflammation. We previously described an innate lymphocyte population in the intestinal epithelium (referred to as innate CD8αα+ , or iCD8α cells) that can protect against gastrointestinal infections such as those mediated by Citrobacter rodentium. METHODS: Here, we have evaluated the potential contribution of these cells to intestinal inflammation by analyzing inflammation development in mice with decreased numbers of iCD8α cells. We also determined the potential of iCD8α cells to secrete granzymes and their potential role during inflammatory processes. RESULTS: We found that iCD8α cells play a pro-inflammatory role in the development of disease in a colitis model induced by anti-CD40 antibodies. We further found that the effects of iCD8α cells correlated with their capacity to secrete granzymes. We also observed that the pro-inflammatory properties of iCD8α cells were controlled by interactions of CD8αα homodimers on these cells with the thymus leukemia antigen expressed by intestinal epithelial cells. CONCLUSIONS: Our findings suggest that iCD8α cells modulate inflammatory responses in the intestinal epithelium, and that dysregulation of iCD8α cells effector functions may enhance disease. We propose that one of the mechanism by which iCD8α cells enhance inflammation is by the secretion of granzymes, which may promote recruitment of infiltrating cells into the epithelium.


Assuntos
Anticorpos/efeitos adversos , Antígenos CD40/antagonistas & inibidores , Antígenos CD8/imunologia , Colite/imunologia , Linfócitos/imunologia , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Antígenos CD40/imunologia , Antígenos CD8/genética , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Linfócitos/patologia , Camundongos , Camundongos Knockout
14.
Aging (Albany NY) ; 9(3): 627-649, 2017 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-28351997

RESUMO

Decreased energy production and increased oxidative stress are considered to be major contributors to aging and aging-associated pathologies. The role of mitochondrial calcium homeostasis has also been highlighted as an important factor affecting different pathological conditions. Here, we present evidence that loss of a small mitochondrial protein Fus1 that maintains mitochondrial homeostasis results in premature aging, aging-associated pathologies, and decreased survival. We showed that Fus1KO mice develop multiple early aging signs including lordokyphosis, lack of vigor, inability to accumulate fat, reduced ability to tolerate stress, and premature death. Other prominent pathological changes included low sperm counts, compromised ability of adult stem cells to repopulate tissues, and chronic inflammation. At the molecular level, we demonstrated that mitochondria of Fus1 KO cells have low reserve respiratory capacity (the ability to produce extra energy during sudden energy demanding situations), and show significantly altered dynamics of cellular calcium response.Our recent studies on early hearing and memory loss in Fus1 KO mice combined with the new data presented here suggest that calcium and energy homeostasis controlled by Fus1 may be at the core of its aging-regulating activities. Thus, Fus1 protein and Fus1-dependent pathways and processes may represent new tools and targets for anti-aging strategies.


Assuntos
Senilidade Prematura/metabolismo , Envelhecimento/metabolismo , Cálcio/metabolismo , Metabolismo Energético/genética , Proteínas Supressoras de Tumor/metabolismo , Adiposidade/genética , Envelhecimento/genética , Senilidade Prematura/genética , Animais , Sinalização do Cálcio , Homeostase/genética , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Contagem de Espermatozoides , Motilidade dos Espermatozoides/genética , Proteínas Supressoras de Tumor/genética
15.
J Clin Invest ; 126(9): 3296-312, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27482886

RESUMO

EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis.


Assuntos
Infecções Bacterianas/metabolismo , Receptores ErbB/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Animais , Quimiocinas/metabolismo , Citrobacter rodentium , Citocinas/metabolismo , Progressão da Doença , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori , Humanos , Inflamação , Masculino , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais
16.
Proc Natl Acad Sci U S A ; 113(32): E4662-70, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462110

RESUMO

Tregs are essential for maintaining peripheral tolerance, and thus targeting these cells may aid in the treatment of autoimmunity and cancer by enhancing or reducing suppressive functions, respectively. Before these cells can be harnessed for therapeutic purposes, it is necessary to understand how they maintain tolerance under physiologically relevant conditions. We now report that transcription factor Kruppel-like factor 2 (KLF2) controls naive Treg migration patterns via regulation of homeostatic and inflammatory homing receptors, and that in its absence KLF2-deficient Tregs are unable to migrate efficiently to secondary lymphoid organs (SLOs). Diminished Treg trafficking to SLOs is sufficient to initiate autoimmunity, indicating that SLOs are a primary site for maintaining peripheral tolerance under homeostatic conditions. Disease severity correlates with impaired Treg recruitment to SLOs and, conversely, promotion of Tregs into these tissues can ameliorate autoimmunity. Moreover, stabilizing KLF2 expression within the Treg compartment enhances peripheral tolerance by diverting these suppressive cells from tertiary tissues into SLOs. Taken together, these results demonstrate that peripheral tolerance is enhanced or diminished through modulation of Treg trafficking to SLOs, a process that can be controlled by adjusting KLF2 protein levels.


Assuntos
Tolerância Imunológica , Fatores de Transcrição Kruppel-Like/fisiologia , Linfócitos T Reguladores/fisiologia , Animais , Autoimunidade , Movimento Celular , Tecido Linfoide/imunologia , Camundongos , Receptores de Retorno de Linfócitos/fisiologia
18.
Immunity ; 41(3): 451-464, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25220211

RESUMO

Innate immune responses are critical for mucosal immunity. Here we describe an innate lymphocyte population, iCD8α cells, characterized by expression of CD8α homodimers. iCD8α cells exhibit innate functional characteristics such as the capacity to engulf and kill bacteria. Development of iCD8α cells depends on expression of interleukin-2 receptor γ chain (IL-2Rγc), IL-15, and the major histocompatibility complex (MHC) class Ib protein H2-T3, also known as the thymus leukemia antigen or TL. While lineage tracking experiments indicated that iCD8α cells have a lymphoid origin, their development was independent of the transcriptional suppressor Id2, suggesting that these cells do not belong to the family of innate lymphoid cells. Finally, we identified cells with a similar phenotype in humans, which were profoundly depleted in newborns with necrotizing enterocolitis. These findings suggest a critical role of iCD8α cells in immune responses associated with the intestinal epithelium.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD8/biossíntese , Imunidade nas Mucosas/imunologia , Mucosa Intestinal/citologia , Linfócitos/imunologia , Animais , Citrobacter rodentium/imunologia , Citocalasina D/farmacologia , Enterocolite Necrosante , Helicobacter pylori/imunologia , Antígenos de Histocompatibilidade Classe I/biossíntese , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Subunidade gama Comum de Receptores de Interleucina/biossíntese , Interleucina-15/biossíntese , Interleucina-2/biossíntese , Interleucina-7/biossíntese , Mucosa Intestinal/imunologia , Ativação Linfocitária/imunologia , Linfócitos/classificação , Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia
19.
mBio ; 5(4): e01243-14, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25053783

RESUMO

The development of gastritis during Helicobacter pylori infection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa during H. pylori infection, we combined mathematical modeling of CD4(+) T cell differentiation with in vivo mechanistic studies. We infected IL-21-deficient and wild-type mice with H. pylori strain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. Chronically H. pylori-infected IL-21-deficient mice had higher H. pylori colonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. These in vivo data were used to calibrate an H. pylori infection-dependent, CD4(+) T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronic H. pylori infection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4(+) splenocyte-specific tbx21 and rorc expression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4(+) T cell-specific IL-10 expression in H. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronic H. pylori infection in a STAT1- and STAT3-dependent manner, therefore playing a major role controlling H. pylori infection and gastritis. Importance: Helicobacter pylori is the dominant member of the gastric microbiota in more than 50% of the world's population. H. pylori colonization has been implicated in gastritis and gastric cancer, as infection with H. pylori is the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis during H. pylori infection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized with H. pylori as an alternative to aggressive antibiotics.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/patogenicidade , Interleucinas/metabolismo , Animais , Feminino , Citometria de Fluxo , Mucosa Gástrica/metabolismo , Interleucinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Teóricos , Fosforilação , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Estômago/microbiologia
20.
PLoS One ; 8(7): e67821, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844100

RESUMO

In vitro CD4(+) T cell differentiation systems have made important contributions to understanding the mechanisms underlying the differentiation of naive CD4(+) T cells into effector cells with distinct biological functions. Mature CD4(+) T cells expressing CD8αα homodimers are primarily found in the intestinal mucosa of men and mice, and to a lesser extent in other tissues such as peripheral blood. Although CD4(+)CD8α(+) T cells are easily identified, very little is known about their development and immunological functions. It has been reported, however, that CD4(+)CD8α(+) T cells possess regulatory properties. In this report, we present a novel in vitro differentiation system where CD4(+) T cells are stimulated to become CD4(+)CD8α(+) T cells in the presence of TGF-ß, IL-7 and IFN-γ, resulting in cells with very similar features as CD4(+)CD8α(+) intraepithelial lymphocytes. This novel in vitro differentiation culture should provide a powerful and tractable tool for dissecting the differentiation and biological functions of CD4(+)CD8α(+) T cells.


Assuntos
Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Interferon gama/farmacologia , Interleucina-7/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Transferência Adotiva , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Citocinas/biossíntese , Imunofenotipagem , Interferon gama/genética , Mucosa Intestinal/imunologia , Camundongos , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Vitamina D/farmacologia , Proteína do Gene 3 de Ativação de Linfócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA