Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 7: 12270, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27481398

RESUMO

The primary visual cortex of higher mammals is organized into two-dimensional maps, where the preference of cells for stimulus parameters is arranged regularly on the cortical surface. In contrast, the preference of neurons in the rodent appears to be arranged randomly, in what is termed a salt-and-pepper map. Here we revisited the spatial organization of receptive fields in mouse primary visual cortex by measuring the tuning of pyramidal neurons in the joint orientation and spatial frequency domain. We found that the similarity of tuning decreases as a function of cortical distance, revealing a weak but statistically significant spatial clustering. Clustering was also observed across different cortical depths, consistent with a columnar organization. Thus, the mouse visual cortex is not strictly a salt-and-pepper map. At least on a local scale, it resembles a degraded version of the organization seen in higher mammals, hinting at a possible common origin.


Assuntos
Orientação/fisiologia , Células Piramidais/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Modelos Neurológicos , Estimulação Luminosa , Córtex Visual/citologia , Campos Visuais/fisiologia
2.
J Physiol ; 594(7): 1891-910, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26844927

RESUMO

KEY POINTS: Using functional mapping assays, we conducted a quantitative assessment of both excitatory and inhibitory synaptic laminar connections to excitatory neurons in layers 2/3-6 of the mouse visual cortex (V1). Laminar-specific synaptic wiring diagrams of excitatory neurons were constructed on the basis of circuit mapping. The present study reveals that that excitatory and inhibitory synaptic connectivity is spatially balanced across excitatory neuronal networks in V1. ABSTRACT: In the mammalian neocortex, excitatory neurons provide excitation in both columnar and laminar dimensions, which is modulated further by inhibitory neurons. However, our understanding of intracortical excitatory and inhibitory synaptic inputs in relation to principal excitatory neurons remains incomplete, and it is unclear how local excitatory and inhibitory synaptic connections to excitatory neurons are spatially organized on a layer-by-layer basis. In the present study, we combined whole cell recordings with laser scanning photostimulation via glutamate uncaging to map excitatory and inhibitory synaptic inputs to single excitatory neurons throughout cortical layers 2/3-6 in the mouse primary visual cortex (V1). We find that synaptic input sources of excitatory neurons span the radial columns of laminar microcircuits, and excitatory neurons in different V1 laminae exhibit distinct patterns of layer-specific organization of excitatory inputs. Remarkably, the spatial extent of inhibitory inputs of excitatory neurons for a given layer closely mirrors that of their excitatory input sources, indicating that excitatory and inhibitory synaptic connectivity is spatially balanced across excitatory neuronal networks. Strong interlaminar inhibitory inputs are found, particularly for excitatory neurons in layers 2/3 and 5. This differs from earlier studies reporting that inhibitory cortical connections to excitatory neurons are generally localized within the same cortical layer. On the basis of the functional mapping assays, we conducted a quantitative assessment of both excitatory and inhibitory synaptic laminar connections to excitatory cells at single cell resolution, establishing precise layer-by-layer synaptic wiring diagrams of excitatory neurons in the visual cortex.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Córtex Visual/fisiologia , Animais , Conectoma , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Córtex Visual/citologia
3.
J Physiol ; 592(10): 2183-96, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24639485

RESUMO

Melanin-concentrating hormone (MCH)-producing neurons are known to regulate a wide variety of physiological functions such as feeding, metabolism, anxiety and depression, and reward. Recent studies have revealed that MCH neurons receive projections from several wake-promoting brain regions and are integral to the regulation of rapid eye movement (REM) sleep. Here, we provide evidence in both rats and mice that MCH neurons express histamine-3 receptors (H3R), but not histamine-1 (H1R) or histamine-2 (H2R) receptors. Electrophysiological recordings in brain slices from a novel line of transgenic mice that specifically express the reporter ZsGreen in MCH neurons show that histamine strongly inhibits MCH neurons, an effect which is TTX insensitive, and blocked by the intracellular presence of GDP-ß-S. A specific H3R agonist, α-methylhistamine, mimicks the inhibitory effects of histamine, and a specific neutral H3R antagonist, VUF 5681, blocks this effect. Tertiapin Q (TPQ), a G protein-dependent inwardly rectifying potassium (GIRK) channel inhibitor, abolishes histaminergic inhibition of MCH neurons. These results indicate that histamine directly inhibits MCH neurons through H3R by activating GIRK channels and suggest that that inhibition of the MCH system by wake-active histaminergic neurons may be responsible for silencing MCH neurons during wakefulness and thus may be directly involved in the regulation of sleep and arousal.


Assuntos
Histamina/farmacologia , Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Neurônios/fisiologia , Hormônios Hipofisários/metabolismo , Receptores Histamínicos H3/metabolismo , Sono/fisiologia , Vigília/fisiologia , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas dos Receptores Histamínicos H3/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos
4.
J Comp Neurol ; 522(9): 2191-208, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24357090

RESUMO

Spontaneous network activity is believed to sculpt developing neural circuits. Spontaneous giant depolarizing potentials (GDPs) were first identified with single-cell recordings from rat CA3 pyramidal neurons, but here we identify and characterize a large-scale spontaneous network activity we term global network activation (GNA) in the developing mouse hippocampal slices, which is measured macroscopically by fast voltage-sensitive dye imaging. The initiation and propagation of GNA in the mouse is largely GABA-independent and dominated by glutamatergic transmission via AMPA receptors. Despite the fact that signal propagation in the adult hippocampus is strongly unidirectional through the canonical trisynaptic circuit (dentate gyrus [DG] to CA3 to CA1), spontaneous GNA in the developing hippocampus originates in distal CA3 and propagates both forward to CA1 and backward to DG. Photostimulation-evoked GNA also shows prominent backward propagation in the developing hippocampus from CA3 to DG. Mouse GNA is strongly correlated to electrophysiological recordings of highly localized single-cell and local field potential events. Photostimulation mapping of neural circuitry demonstrates that the enhancement of local circuit connections to excitatory pyramidal neurons occurs over the same time course as GNA and reveals the underlying pathways accounting for GNA backward propagation from CA3 to DG. The disappearance of GNA coincides with a transition to the adult-like unidirectional circuit organization at about 2 weeks of age. Taken together, our findings strongly suggest a critical link between GNA activity and maturation of functional circuit connections in the developing hippocampus.


Assuntos
Hipocampo/crescimento & desenvolvimento , Hipocampo/fisiologia , Animais , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Microeletrodos , Vias Neurais/efeitos dos fármacos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Estimulação Luminosa , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/crescimento & desenvolvimento , Células Piramidais/fisiologia , Receptores de GABA-B/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Técnicas de Cultura de Tecidos , Imagens com Corantes Sensíveis à Voltagem
5.
Nature ; 501(7468): 543-6, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23975100

RESUMO

Early sensory experience instructs the maturation of neural circuitry in the cortex. This has been studied extensively in the primary visual cortex, in which loss of vision to one eye permanently degrades cortical responsiveness to that eye, a phenomenon known as ocular dominance plasticity (ODP). Cortical inhibition mediates this process, but the precise role of specific classes of inhibitory neurons in ODP is controversial. Here we report that evoked firing rates of binocular excitatory neurons in the primary visual cortex immediately drop by half when vision is restricted to one eye, but gradually return to normal over the following twenty-four hours, despite the fact that vision remains restricted to one eye. This restoration of binocular-like excitatory firing rates after monocular deprivation results from a rapid, although transient, reduction in the firing rates of fast-spiking, parvalbumin-positive (PV) interneurons, which in turn can be attributed to a decrease in local excitatory circuit input onto PV interneurons. This reduction in PV-cell-evoked responses after monocular lid suture is restricted to the critical period for ODP and appears to be necessary for subsequent shifts in excitatory ODP. Pharmacologically enhancing inhibition at the time of sight deprivation blocks ODP and, conversely, pharmacogenetic reduction of PV cell firing rates can extend the critical period for ODP. These findings define the microcircuit changes initiating competitive plasticity during critical periods of cortical development. Moreover, they show that the restoration of evoked firing rates of layer 2/3 pyramidal neurons by PV-specific disinhibition is a key step in the progression of ODP.


Assuntos
Período Crítico Psicológico , Dominância Ocular/fisiologia , Inibição Neural , Plasticidade Neuronal/fisiologia , Visão Monocular/fisiologia , Córtex Visual/fisiologia , Animais , Dominância Ocular/efeitos dos fármacos , Feminino , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Lasers , Masculino , Camundongos , Inibição Neural/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Parvalbuminas/metabolismo , Estimulação Luminosa , Privação Sensorial/fisiologia , Visão Binocular/efeitos dos fármacos , Visão Binocular/fisiologia , Visão Monocular/efeitos dos fármacos , Córtex Visual/citologia , Córtex Visual/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-23060751

RESUMO

The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar circuit responses in living slice preparations of mouse primary visual cortex (V1). During experiments, LSPS using caged glutamate provided spatially restricted neuronal activation in a specific cortical layer, and evoked responses from the stimulated layer to its functionally connected regions were detected by VSD imaging. In this study, we first provided a detailed analysis of spatiotemporal activation patterns at specific V1 laminar locations and measured local circuit connectivity. Then we examined the role of cortical inhibition in the propagation of evoked cortical responses by comparing circuit activity patterns in control and in the presence of GABAa receptor antagonists. We found that GABAergic inhibition was critical in restricting layer-specific excitatory activity spread and maintaining topographical projections. In addition, we investigated how AMPA and NMDA receptors influenced cortical responses and found that blocking AMPA receptors abolished interlaminar functional projections, and the NMDA receptor activity was important in controlling visual cortical circuit excitability and modulating activity propagation. The NMDA receptor antagonist reduced neuronal population activity in time-dependent and laminar-specific manners. Finally, we used the quantitative information derived from the mapping experiments and presented computational modeling analysis of V1 circuit organization. Taken together, the present study has provided important new information about mouse V1 circuit organization and response modulation.

7.
J Vis Exp ; (56)2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-22006064

RESUMO

Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially restricted region of the brain slice by UV laser photolysis; simultaneous voltage-clamp recordings allow detection of photostimulation-evoked synaptic responses. Maps of either excitatory or inhibitory synaptic input to the targeted neuron are generated by scanning the laser beam to stimulate hundreds of potential presynaptic sites. Thus, LSPS enables the construction of detailed maps of synaptic inputs impinging onto specific types of inhibitory neurons through repeated experiments. Taken together, the photostimulation-based technique offers neuroscientists a powerful tool for determining the functional organization of local cortical circuits.


Assuntos
Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Somatossensorial/fisiologia , Animais , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Técnicas de Patch-Clamp/métodos , Estimulação Luminosa/instrumentação , Fotólise , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo
8.
J Neurophysiol ; 103(4): 2301-12, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20130040

RESUMO

The development of modern neuroscience tools is critical for deciphering brain circuit organization and function. An important aspect for technical development is to enhance each technique's advantages and compensate for limitations. We developed a high-precision and fast functional mapping technique in brain slices that incorporates the spatial precision of activation that can be achieved by laser-scanning photostimulation with rapid and high-temporal resolution assessment of evoked network activity that can be achieved by voltage-sensitive dye imaging. Unlike combination of whole cell recordings with photostimulation for mapping local circuit inputs to individually recorded neurons, this innovation is a new photostimulation-based technique to map cortical circuit output and functional connections at the level of neuronal populations. Here we report on this novel technique in detail and show its effective applications in mapping functional connections and circuit dynamics in mouse primary visual cortex and hippocampus. Given that this innovation enables rapid mapping and precise evaluation of cortical organization and function, it can have broad impacts in the field of cortical circuitry.


Assuntos
Mapeamento Encefálico/métodos , Lasers , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Fenômenos Eletrofisiológicos/fisiologia , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA