Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(9): 14254-14269, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273087

RESUMO

The Sepetiba Bay (Southeast Brazil) is a known Cd- and Zn-contaminated site that received spills of a large slag pile leachate from a Zn smelter. With important harbors, Sepetiba Bay demands periodic dredging operations which affect the mobility of the metals. The main goal of this work was to assess metal mobility in sediments and its associated toxicity in a fictive dredging area, to evaluate the risks of the operation. To achieve this goal, 18 superficial sediment samples were collected and characterized for pH and Eh. Sediments were analyzed for grain size, organic carbon, and total nitrogen, and metal mobility was evaluated with a sequential extraction procedure, proposed by the European Community Bureau of Reference (BCR). The results demonstrate that Cd and Zn are mainly associated with the exchangeable fraction (mean concentrations 1.4 mg kg-1 and 149.4 mg kg-1, respectively) and reducible fractions (mean concentrations 0.3 mg kg-1 and 65.5 mg kg-1, respectively), while Fe, Cr, Cu, Ni, and Al were associated with the residual fraction. Metals in the residual fraction are probably associated with the mineral lattice of the sediment and should not represent an environmental risk for the biota. The application of the enrichment factor and three risk assessment indexes (Risk Assessment Code, Risky Pollution Index, and Bioavailability Risk Assessment Index) show that the sediments are considerably enriched in metals that constitute a relevant risk for the sediment biota. In the case of dredging operations, Cd and Zn should be released to the overlying waters and be available to organisms, threatening the whole ecosystem. The proposed approach was shown to be much more precise than what is frequently presented in the Environmental Impact Assessments that only consider the threshold limits of the legislation.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Metais Pesados/análise , Sedimentos Geológicos/química , Cádmio , Baías/química , Ecossistema , Brasil , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Medição de Risco
2.
Sci Total Environ ; 904: 166873, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689208

RESUMO

Mollusc rearing is a relevant global socioeconomic activity. However, this activity has faced severe problems in the last years in southeast Brazil. The mariculture scallop production dropped from 51,2 tons in 2016 to 10,2 tons in 2022 in the Baia da Ilha Grande (BIG; Rio de Janeiro). However, the possible causes of this collapse are unknown. This study aimed to analyze decadal trends of water quality in Nodipecten nodosus spat and adult production in BIG. We also performed physical-chemical and biological water quality analyses of three scallop farms and two nearby locations at BIG in 2022 to evaluate possible environmental stressors and risks. Scallop spat production dropped drastically in the last five years (2018-2022: mean ± stdev: 0.47 ± 0.45 million). Spat production was higher in colder waters and during peaks of Chlorophyll a in the last 13 years. Reduction of Chlorophyll a coincided with decreasing spat production in the last five years. Warmer periods (>27 °C) of the year may hamper scallop development. Counts of potentially pathogenic bacteria (Vibrios) and Escherichia coli were significantly higher in warmer periods which may further reduce scallop productivity. Shotgun metagenomics of seawater samples from the five studied corroborated these culture-based counts. Vibrios and fecal indicator bacteria metagenomic sequences were abundant across the entire study area throughout 2022. The results of this study suggest the collapse of scallop mariculture is the result of a synergistic negative effect of global warming and poor seawater quality.


Assuntos
Aquecimento Global , Pectinidae , Animais , Clorofila A , Brasil , Poluição da Água
3.
Mar Pollut Bull ; 188: 114640, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36750004

RESUMO

The Fundão Dam rupture released tons of iron ore tailings into the environment. This study analyzes the long-term impacts and provides a possible scenario of Doce River (DR) plume dispersion. For this, water and surface sediment were collected in November 2019 along three Brazilian states to determine metal concentrations and δ13C and δ15N compositions. The δ13Csediment values of the DR plume showed a dispersion pattern mainly to the north but also in areas closer to the south of the DR mouth. Furthermore, the most negative values of δ13C and δ15N were observed in mud, followed by suspended particulate matter, sediment and the dissolved fraction, indicating that geological matrices are involved in the transport of organic matter coupled to metals to the ocean and pointing to the DR as the main source of metals in the region. Thus, this study highlights the need for continuous studies to monitor the environmental and biological conditions in these areas.


Assuntos
Desastres , Oligoelementos , Poluentes Químicos da Água , Rios , Brasil , Monitoramento Ambiental , Metais/análise , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 865: 161278, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36592904

RESUMO

The rupture of the Córrego do Feijão dam in Brumadinho (January 25, 2019) caused serious damage to the Paraopeba River and compromised the quality of its waters for human consumption. However, the possible effects of the dam collapse on the river microbiome and its antibiotic resistance profiles are unknown. The present study aims to analyse the possible shifts in microbial diversity and enhancement of antibiotic resistance in the Paraopeba River. To this end, two sampling campaigns (February and May 2019) were performed to obtain water across the entire Paraopeba River (eight sampling locations: Moeda, Brumadinho, Igarapé, Juatuba, Varginha, Angueretá, Retiro Baixo and Três Marias; ~464 km). This sampling scheme enabled determining the effects of the disaster on the river microbiome. Total DNA and microbial isolation were performed with these water samples. The 16S rRNA-based microbiome analyses (n = 24; 2.05 million 16S rRNA reads) showed changes in microbial diversity immediately after the disaster with the presence of metal-indicating bacteria (Acinetobacter, Bacillus, Novosphingobium, and Sediminibacterium). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) identification of bacterial isolates (n = 170) also disclosed possible indicators of faecal contamination across the Paraopeba (Cloacibacterium, Bacteroides, Feaecalibacterium, Bifidobacterium, Citrobacter, Enterobacter, Enterococcus and Escherichia). Antibiotic resistance increased significantly to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, ceftriaxone, and cefalotin among isolates obtained in May after the disaster. The effects of toxic mud on microbiomes were felt at all points sampled up to Anguereta. The ore mud may have exacerbated the growth of different antibiotic-resistant, metal-resistant, and faecal-indicating bacteria in the Paraopeba River.


Assuntos
Microbiota , Colapso Estrutural , Poluentes Químicos da Água , Humanos , Rios/microbiologia , RNA Ribossômico 16S/genética , Brasil , Bactérias/genética , Poluentes Químicos da Água/análise , Resistência Microbiana a Medicamentos , Água/análise , Ampicilina/análise , Monitoramento Ambiental
5.
Environ Monit Assess ; 194(10): 797, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36114919

RESUMO

Recent reports of illegal small-scale alluvial gold mining activities (locally called garimpo) by miners working on rafts in the Paraíba do Sul River (PSR) and in one of its tributaries (Muriaé River (MR)) have raised concerns about Hg contamination. This study aimed to evaluate the impact of garimpo activities on Hg contamination in three environmental compartments. Water, sediment, and aquatic macrophytes (Pistia stratiotes) were sampled during the rainy season in PSR, forming a 106-km transect from the point where garimpo rafts were seen and/or seized by the Federal Police. They were also sampled in the MR. Total and dissolved mercury (Hg) concentrations in water and total Hg in the suspended particulate matter (SPM) sampled in the PSR increased by 1.7, 1.5, and 2.1 times at the points where the rafts were seen compared to the point immediately upstream. In the MR, Hg concentrations were higher than those in the PSR, but most values in the environmental compartments were below the safe limits (174-486 ng∙g-1, threshold and probable effect level, respectively), with the exception of Hg in the SPM of one of the MR sampling points (256 ng∙g-1) and the mining tailings (197 ng∙g-1). Sediment granulometry was exponentially associated with Hg concentrations in the sediment (R2 = 0.75, p < 0.0001) and is also essential to understand the physical impacts of garimpo on PSR. Future studies should focus on assessing the seasonal variability of Hg concentrations in the studied compartments, especially if garimpo is identified during the dry season.


Assuntos
Araceae , Mercúrio , Poluentes Químicos da Água , Brasil , Monitoramento Ambiental , Sedimentos Geológicos , Ouro , Mercúrio/análise , Mineração , Material Particulado/análise , Rios , Água , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 756: 143697, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33307494

RESUMO

The rupture of Fundão Dam is considered one of the largest environmental disasters in Brazilian history and one of the largest in the world involving tailings dams. The present study analyzed the changes in metal concentrations in the dissolved, suspended particulate matter (SPM) and sediment in the period just after (15 days) and six months after the dam rupture, together with the biological and cytogenotoxic effects, from the collapse site until the Doce River mouth in the Atlantic Ocean. After the dam rupture, the tailings were mainly transported as SPM. After six months, with the deposition, there was a decrease in metal concentrations in dissolved and SPM and increased levels were observed in the sediment. Cr, Ni, Cd and Hg levels in sediment were higher than the threshold effects level (TEL/NOAA), especially six months after the dam rupture. The water induced immediate negative biological effects at different levels of the trophic chain, together with Al, Fe, Mn and Zn accumulation in fish muscle. Both water and sediment also showed cytotoxic, genotoxic and mutagenic effects. These data demonstrate the importance of long-term monitoring with abiotic and biotic parameters to clarify the impacts of mining tailings and can help to direct future monitoring programs.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Oceano Atlântico , Brasil , Monitoramento Ambiental , Metais Pesados/análise , Mineração , Propanolaminas , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Sci Rep ; 10(1): 5936, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246081

RESUMO

The rupture of the Brumadinho mining tailings dam in Brazil is considered one of the largest mining disasters in the world, resulting in 244 deaths and 26 missing people, in addition to the environmental consequences. The present study aims to evaluate the concentrations of multiple elements and the biological effects on water and sediments of the Paraopeba River after the Brumadinho Dam rupture. The tailings are formed by fine particulate material with large amounts of Fe, Al, Mn, Ti, rare earth metals and toxic metals. In the water, the levels of Fe, Al, Mn, Zn, Cu, Pb, Cd and U were higher than those allowed by Brazilian legislation. In the sediments, Cr, Ni, Cu and Cd levels were higher than the established sediment quality guidelines (TEL-NOAA). The differences in metal concentrations in the water and sediments between the upstream and downstream sides of the dam illustrate the effect of the tailings in the Paraopeba River. Toxicological tests demonstrated that the water and sediments were toxic to different trophic levels, from algae to microcrustaceans and fish. The fish exposed to water and sediments containing mine ore also accumulated metals in muscle tissue. This evaluation emphasizes the necessity of long-term monitoring in the affected area.

8.
Sci Total Environ ; 654: 1209-1217, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30841395

RESUMO

To evaluate the impacts of the Fundão tailings dam failure (Minas Gerais, Brazil) on water quality of the Doce River, we analyzed metagenomics and physicochemical parameters during the month of the disaster and again 6 and 10 months after the disaster. To compare dam conditions before and after the failure, we performed a meta-analysis of physicochemical data from a public database. Immediately after the failure, suspended particulate matter (SPM) in the Doce River was 225-1877 mg L-1. Turbidity and dissolved aluminum and iron concentrations were extremely high, whereas dissolved oxygen was below Brazilian legislation norm (<5 mg L-1) in several locations. Six months later, physicochemical values were below thresholds set by Brazilian guidelines (e.g., SPM = 8-166 mg L-1). Short-term impacts on microbial communities included an increase in Actinobacteria and Bacteroidetes and gene sequences related to microbial virulence, motility, respiration, membrane transport, iron and nitrogen metabolism, suggesting changes in microbial metabolic profiles. The 11 recovered partial genomes from metagenomes (MAGs) had genes related to Fe cycle and metal resistance.


Assuntos
Vazamento de Resíduos Químicos , Monitoramento Ambiental , Água Doce/microbiologia , Microbiologia da Água , Poluentes Químicos da Água/análise , Desastres , Microbiota , Mineração
9.
Sci Total Environ ; 697: 134038, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32380596

RESUMO

On November 5th, 2015, the Fundão dam rupture released >50 million m3 of ore tailings into the Doce River, Minas Gerais State, Brazil. The huge volume of mud spread along the river and reached the sea, 17 days after the disaster, in Regência, Espírito Santo State (ES). In 2018, after three years of the disaster, the impacts of the ore tailings in the marine environment are still unclear. This study aims to investigate possible short-term impacts in marine biodiversity caused by the ore tailings' mud over the reef ecosystems that are closest to the disaster area: i.e. recently discovered reefs in the southern Abrolhos Bank. A remote sensing surveillance including winds, sea surface temperature, total suspended material and watercolor (MODIS Aqua data) indicated that the iron tailings plume reached the southern portion of Abrolhos Bank on June 16th, 2016. Subsequently, to obtain further evidence of the presence of the tailings in the coral reefs, water samples were collected in a gradient spanning from the river estuary to the reefs in southern Abrolhos Bank, we also analyzed the isotopic and microbial composition of the samples, as well as the reef benthic composition. Despite no clues of negative impact on benthic (coral) communities, isotopic analysis confirmed the presence of the plume over the reefs area. This study serves as a baseline for future long-term impact assessments of the health of coral reefs in the Abrolhos Bank.


Assuntos
Recifes de Corais , Metagenômica , Tecnologia de Sensoriamento Remoto , Rios/química , Poluentes da Água/análise , Animais , Antozoários , Brasil , Ecossistema , Isótopos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA