RESUMO
Canine atopic dermatitis (AD) is a very common inflammatory skin disease, but limited data are available on the genetic characterization (somatic mutations, microarrays, and genome-wide association study (GWAS)) of skin lesions in affected dogs. microRNAs are good biomarkers in inflammatory and neoplastic diseases in people. The aim of this study was to evaluate microRNA expression in the skin of atopic beagles, before and after exposure to Dermatophagoides farinae. Four atopic and four unrelated age-matched healthy beagle dogs were enrolled. Total RNA was extracted from flash-frozen skin biopsies of healthy and atopic dogs. For the atopic dogs, skin biopsies were taken from non-lesional (day 0) and lesional skin (day 28 of weekly environmental challenge with Dermatophagoides farinae). Small RNA libraries were constructed and sequenced. The microRNA sequences were aligned to CanFam3.1 genome. Differential expressed microRNAs were selected on the basis of fold-change and statistical significance (fold-change ≥ 1.5 and p ≤ 0.05 as thresholds. A total of 277 microRNAs were sequenced. One hundred and twenty-one differentially regulated microRNAs were identified between non-lesional and healthy skin. Among these, two were increased amount and 119 were decreased amount. A total of 45 differentially regulated microRNAs between lesional and healthy skin were identified, 44 were decreased amount and one was increased amount. Finally, only two increased amount microRNAs were present in lesional skin when compared with that of non-lesional skin. This is the first study in which dysregulation of microRNAs has been associated with lesional and non-lesional canine AD. Larger studies are needed to understand the role of microRNA in canine AD.
Assuntos
Dermatite Atópica/genética , Doenças do Cão/genética , MicroRNAs/genética , Animais , Estudos de Casos e Controles , Dermatite Atópica/patologia , Dermatophagoides farinae/patogenicidade , Cães , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Pele/patologiaRESUMO
Ferritin is a nanocage protein composed by the variable assembly of 24 heavy and light subunits. As major intracellular iron storage protein, ferritin has been studied for many years in the context of iron metabolism. However, recent evidences have highlighted its role, in particular that of the heavy subunit (FHC), in pathways related to cancer development and progression, such as cell proliferation, growth suppressor evasion, cell death inhibition, and angiogenesis. At least partly, the involvement in these pathways is due to the ability of FHC to control the expression of a repertoire of oncogenes and oncomiRNAs. Moreover, the existence of a feedback loop between FHC and the tumor suppressor p53 has been demonstrated in different cell types. Here, we show that ectopic over-expression of FHC induces the promoter hypermethylation and the down-regulation of miR-125b that, in turn, enhances p53 protein expression in non-small cell lung cancer (NSCLC) cell lines. Notably, analysis by absolute quantitative RT-PCR of FHC, miR-125b, and p53 strongly suggests that this axis might be active in human NSCLC tissue specimens. In vitro, FHC over-expression attenuates survival of NSCLC cells by inducing p53-mediated intrinsic apoptosis that is partially abrogated upon miR-125b re-expression. Overall, our findings demonstrate that FHC acts as a tumor suppressor gene, thus providing a potential molecular strategy for induction of NSCLC apoptotic cell death.
Assuntos
Adenocarcinoma de Pulmão/genética , Apoferritinas/genética , Carcinoma de Células Grandes/genética , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adulto , Idoso , Apoferritinas/metabolismo , Apoptose/genética , Carcinoma de Células Grandes/metabolismo , Carcinoma de Células Grandes/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Retroalimentação Fisiológica , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismoRESUMO
In this study, we have set-up a routine pipeline to evaluate the clinical application of Oncomine™ Focus Assay, a panel that allows the simultaneous detection of single nucleotide hotspot mutations in 35 genes, copy number alterations (CNAs) in 19 genes and gene fusions involving 23 genes in cancer samples. For this study we retrospectively selected 106 patients that were submitted to surgical resection for lung, gastric, colon or rectal cancer. We found that 56 patients out of 106 showed at least one alteration (53%), with 47 patients carrying at least one relevant nucleotide variant, 10 patients carrying at least one CNA and 3 patients carrying one gene fusion. On the basis of the mutational profiles obtained, we have identified 22 patients (20.7%) that were potentially eligible for targeted therapy. The most frequently mutated genes across all tumor types included KRAS (30 patients), PIK3CA (16 patients), BRAF (6 patients), EGFR (5 patients), NRAS (4 patients) and ERBB2 (3 patients) whereas CCND1, ERBB2, EGFR and MYC were the genes most frequently subjected to copy number gain. Finally, gene fusions were identified only in lung cancer patients and involved MET [MET(13)-MET(15) fusion] and FGFR3 [FGFR3(chr 17)-TACC3(chr 11)]. In conclusion, we demonstrate that the analysis with a multi-biomarker panel of cancer patients after surgery, may present several potential advantages in clinical daily practice, including the simultaneous detection of different potentially druggable alterations, reasonable costs, short time of testing and automated interpretation of results.
RESUMO
In the publication of this article [1], there is an error in Fig. 7. The minus and plus signals are inverted which impairs understanding of the results described.
RESUMO
Centrosome anomalies contribute to tumorigenesis, but it remains unclear how they are generated in lethal cancer phenotypes. Here, it is demonstrated that human microsatellite instable (MSI) and BRAFV600E-mutant colorectal cancers with a lethal rhabdoid phenotype are characterized by inactivation of centrosomal functions. A splice site mutation that causes an unbalanced dosage of rootletin (CROCC), a centrosome linker component required for centrosome cohesion and separation at the chromosome 1p36.13 locus, resulted in abnormally shaped centrosomes in rhabdoid cells from human colon tissues. Notably, deleterious deletions at 1p36.13 were recurrent in a subgroup of BRAFV600E-mutant and microsatellite stable (MSS) rhabdoid colorectal cancers, but not in classical colorectal cancer or pediatric rhabdoid tumors. Interfering with CROCC expression in near-diploid BRAFV600E-mutant/MSI colon cancer cells disrupts bipolar mitotic spindle architecture, promotes tetraploid segregation errors, resulting in a highly aggressive rhabdoid-like phenotype in vitro Restoring near-wild-type levels of CROCC in a metastatic model harboring 1p36.13 deletion results in correction of centrosome segregation errors and cell death, revealing a mechanism of tolerance to mitotic errors and tetraploidization promoted by deleterious 1p36.13 loss. Accordingly, cancer cells lacking 1p36.13 display far greater sensitivity to centrosome spindle pole stabilizing agents in vitro These data shed light on a previously unknown link between centrosome cohesion defects and lethal cancer phenotypes providing new insight into pathways underlying genome instability.Implications: Mis-segregation of chromosomes is a prominent feature of chromosome instability and intratumoral heterogeneity recurrent in metastatic tumors for which the molecular basis is unknown. This study provides insight into the mechanism by which defects in rootletin, a centrosome linker component causes tetraploid segregation errors and phenotypic transition to a clinically devastating form of malignant rhabdoid tumor. Mol Cancer Res; 16(9); 1385-95. ©2018 AACR.
Assuntos
Centrossomo/fisiologia , Neoplasias Colorretais/genética , Tetraploidia , Centrossomo/metabolismo , Neoplasias Colorretais/metabolismo , Humanos , FenótipoRESUMO
The objective of this study was to determine the feasibility to detect copy number alterations in colon cancer samples using Next Generation Sequencing data and to elucidate the association between copy number alterations in specific genes and the development of cancer in different colon segments. We report the successful detection of somatic changes in gene copy number in 37 colon cancer patients by analysis of sequencing data through Amplicon CNA Algorithm. Overall, we have found a total of 748 significant copy number alterations in 230 significant genes, of which 143 showed CN losses and 87 showed CN gains. Validation of results was performed on 20 representative genes by quantitative qPCR and/or immunostaining. By this analysis, we have identified 4 genes that were subjected to copy number alterations in tumors arising in all colon segments (defined "common genes") and the presence of copy number alterations in 14 genes that were significantly associated to one specific site (defined "site-associated genes"). Finally, copy number alterations in ASXL1, TSC1 and IL7R turned out to be clinically relevant since the loss of TSC1 and IL7R was associated with advanced stages and/or reduced survival whereas copy number gain of ASXL1 was associated with good prognosis.
RESUMO
The objective of this study was to investigate the mutational profiles of cancers arising in different colon segments. To this aim, we have analyzed 37 colon cancer samples by use of the Ion AmpliSeq™ Comprehensive Cancer Panel. Overall, we have found 307 mutated genes, most of which already implicated in the development of colon cancer. Among these, 15 genes were mutated in tumors originating in all six colon segments and were defined "common genes" (i.e. APC, PIK3CA, TP53) whereas 13 genes were preferentially mutated in tumors originating only in specific colon segments and were defined "site-associated genes" (i.e. BLNK, PTPRD). In addition, the presence of mutations in 10 of the 307 identified mutated genes (NBN, SMUG1, ERBB2, PTPRT, EPHB1, ALK, PTPRD, AURKB, KDR and GPR124) were found to be of clinical relevance. Among clinically relevant genes, NBN and SMUG1 were identified as independent prognostic factors that predicted poor survival in colon cancer patients. In conclusion, the findings reported here indicate that tumors arising in different colon segments present differences in the type and/or frequency of genetic variants, with two of them being independent prognostic factors that predict poor survival in colon cancer patients.
RESUMO
Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. We found that, altogether, aberrant PI3K/AKT signalling in lung epithelial cells regulated the expression of 1,960/20,436 genes (9%), though only 30 differentially expressed genes (DEGs) (15 up-regulated, 12 down-regulated and 3 discordant) out of 20,436 that were common among BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells (0.1%). Conversely, DEGs specific for mutant AKT1 were 133 (85 up-regulated; 48 down-regulated), DEGs specific for mutant PIK3CA were 502 (280 up-regulated; 222 down-regulated) and DEGs specific for PTEN loss were 1549 (799 up-regulated, 750 down-regulated). The results obtained from array analysis were confirmed by quantitative RT-PCR on selected up- and down-regulated genes (n = 10). Treatment of BEAS-C cells and the corresponding derivatives with pharmacological inhibitors of AKT (MK2206) or PI3K (LY294002) further validated the significance of our findings. Moreover, mRNA expression of selected DEGs (SGK1, IGFBP3, PEG10, GDF15, PTGES, S100P, respectively) correlated with the activation status of the PI3K/AKT pathway assessed by S473 phosphorylation in NSCLC cell lines (n = 6). Finally, we made use of Ingenuity Pathway Analysis (IPA) to investigate the relevant BioFunctions enriched by the costitutive activation of AKT1-, PI3K- or PTEN-dependent signalling in lung epithelial cells. Expectedly, the analysis of the DEGs common to all three alterations highlighted a group of BioFunctions that included Cell Proliferation of tumor cell lines (14 DEGs), Invasion of cells (10 DEGs) and Migration of tumour cell lines (10 DEGs), with a common core of 5 genes (ATF3, CDKN1A, GDF15, HBEGF and LCN2) that likely represent downstream effectors of the pro-oncogenic activities of PI3K/AKT signalling. Conversely, IPA analysis of exclusive DEGs led to the identification of different downstream effectors that are modulated by mutant AKT1 (TGFBR2, CTSZ, EMP1), mutant PIK3CA (CCND2, CDK2, IGFBP2, TRIB1) and PTEN loss (ASNS, FHL2). These findings not only shed light on the molecular mechanisms that are activated by aberrant signalling through the PI3K/AKT pathway in lung epithelial cells, but also contribute to the identification of previously unrecognised molecules whose regulation takes part in the development of lung cancer.
Assuntos
Expressão Gênica , Neoplasias Pulmonares/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Transformada , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MutaçãoRESUMO
Background: Purpose of this study was to evaluate the contribution of the Extracellular-regulated protein kinase (ERK)-1/2 pathway to oncogenic signaling elicited by the tyrosine kinase receptor HER2 in Non-Small Cell Lung Cancer (NSCLC) and to assess the prognostic value of these oncoproteins in NSCLC patients. Methods: Immunohistochemistry was performed to determine expression and activation of HER2 and ERK1/2 (detected by phosphorylation of Y1248 and T202/Y204, respectively) using Tissue Micro Arrays (TMA) containing matched normal and neoplastic tissues from 132 NSCLC patients. Survival analysis was carried out using the Kaplan-Meier method. Univariate and multivariate analysis were used to evaluate the prognostic value of pERK1/2, pHER2 and a combination thereof with clinical-pathological parameters such as age, lymph node status (N), size (T), stage (TNM) and grade. Results: We found that HER2 was overexpressed in 33/120 (27%) and activated in 41/114 (36%) cases; ERK1/2 was activated in 44/102 (43%) cases. A direct association was found between pERK1/2 and pHER2 (23/41; p=0.038). In addition, patients positive for pERK1/2 and for both pHER2 and pERK1/2 showed significantly worse overall survival (OS) and disease-free survival (DFS) compared with negative patients. Univariate and multivariate analysis of patients' survival revealed that positivity for pHER2-pERK1/2 and for pERK1/2 alone were independent prognostic factors of poor survival in NSCLC patients. In particular, this association was significantly important for DFS in stage I+II patients. Conclusion: This study provides evidence that activated ERK1/2 and/or the combined activation of HER2 and ERK1/2 are good indicators of poor prognosis in NSCLC patients, not only in unselected patients but also in early stage disease.
RESUMO
Naturally occurring resistance-associated substitutions (RASs) can negatively impact the response to direct-acting antivirals (DAAs) agents-based therapies for hepatitis C virus (HCV) infection. Herein, we set out to characterize the RASs in the HCV1b genome from serum samples of DAA-naïve patients in the context of the SINERGIE (South Italian Network for Rational Guidelines and International Epidemiology, 2014) project. We deep-sequenced the NS3/4A protease region of the viral population using the Ion Torrent Personal Genome Machine, and patient-specific majority rule consensus sequence summaries were constructed with a combination of freely available next generation sequencing data analysis software. We detected NS3/4A protease major and minor variants associated with resistance to boceprevir (V36L), telaprevir (V36L, I132V), simeprevir (V36L), and grazoprevir (V36L, V170I). Furthermore, we sequenced part of HCV NS5B polymerase using Sanger-sequencing and detected a natural RAS for dasabuvir (C316N). This mutation could be important for treatment strategies in cases of previous therapy failure.
Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Farmacorresistência Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Oligopeptídeos/farmacologia , Prolina/análogos & derivados , Prolina/farmacologia , Simeprevir/farmacologia , Proteínas não Estruturais Virais/genéticaRESUMO
The hotspot AKT1E17K mutation in the pleckstrin homology domain of AKT1 occurs in approximately 0.6-2% of human lung cancers. Recently, we have demonstrated that AKT1E17K transforms immortalized human bronchial cells. Here by use of a transgenic Cre-inducible murine strain in the wild type Rosa26 (R26) locus (R26-AKT1E17K mice) we demonstrate that AKT1E17K is a bona-fide oncogene and plays a role in the development of lung cancer in vivo. In fact, we report that mutant AKT1E17K induces bronchial and/or bronchiolar hyperplastic lesions in murine lung epithelium, which progress to frank carcinoma at very low frequency, and accelerates tumor formation induced by chemical carcinogens. In conclusion, AKT1E17K induces hyperplasia of mouse lung epithelium in vivo and cooperates with urethane to induce the fully malignant phenotype.