Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
F1000Res ; 112022.
Artigo em Inglês | MEDLINE | ID: mdl-36016992

RESUMO

Sustainability of research infrastructures (RIs) is a big challenge for funders, stakeholders and operators, and the development and adoption of adequate management tools is a major concern, namely tools for monitoring and evaluating their performance and impact. BioData.pt is the Portuguese Infrastructure of Biological and Portuguese node of the European Strategy Forum on Research Infrastructures "Landmark" ELIXIR. The foundations of this national research infrastructure were laid under the "Building BioData.pt" project, for four years. During this period, performance and impact indicators were collected and analysed under the light of international guidelines for assessing the performance and impact of European research infrastructures produced by the European Strategy Forum on Research Infrastructures, the Organisation for Economic Co-operation and Development and the EU-funded RI-PATHS project. The exercise shared herein showed that these frameworks can be adopted by national RIs, with the necessary adaptations, namely to reflect the national landscape and specificity of activities, and can be powerful tools in supporting the management of RIs. "Not everything that counts can be counted, and not everything that can be counted, counts". Albert Einstein, Theoretical physicist and Nobel Prize winner.

2.
Chemosphere ; 209: 7-16, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29908430

RESUMO

The oil drilling process generates large volumes of waste with inadequate treatments. Here, oil drilling waste (ODW) microbial communities demonstrate different hydrocarbon degradative abilities when exposed to distinct nutrient enrichments as revealed by comparative metagenomics. The ODW was enriched in Luria Broth (LBE) and Potato Dextrose (PDE) media to examine the structure and functional variations of microbial consortia. Two metagenomes were sequenced on Ion Torrent platform and analyzed using MG-RAST. The STAMP software was used to analyze statistically significant differences amongst different attributes of metagenomes. The microbial diversity presented in the different enrichments was distinct and heterogeneous. The metabolic pathways and enzymes were mainly related to the aerobic hydrocarbons degradation. Moreover, our results showed efficient biodegradation after 15 days of treatment for aliphatic hydrocarbons (C8-C33) and polycyclic aromatic hydrocarbons (PAHs), with a total of about 50.5% and 46.4% for LBE and 44.6% and 37.9% for PDE, respectively. The results obtained suggest the idea that the enzymatic apparatus have the potential to degrade petroleum compounds.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Metagenômica/métodos , Campos de Petróleo e Gás/química , Petróleo/metabolismo
3.
Environ Pollut ; 235: 869-880, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29353803

RESUMO

Drill cuttings leave behind thousands of tons of residues without adequate treatment, generating a large environmental liability. Therefore knowledge about the microbial community of drilling residue may be useful for developing bioremediation strategies. In this work, samples of drilling residue were enriched in different culture media in the presence of petroleum, aiming to select potentially oil-degrading bacteria and biosurfactant producers. Total DNA was extracted directly from the drill cutting samples and from two enriched consortia and sequenced using the Ion Torrent platform. Taxonomic analysis revealed the predominance of Proteobacteria in the metagenome from the drill cuttings, while Firmicutes was enriched in consortia samples. Functional analysis using the Biosurfactants and Biodegradation Database (BioSurfDB) revealed a similar pattern among the three samples regarding hydrocarbon degradation and biosurfactants production pathways. However, some statistical differences were observed between samples. Namely, the pathways related to the degradation of fatty acids, chloroalkanes, and chloroalkanes were enriched in consortia samples. The degradation colorimetric assay using dichlorophenolindophenol as an indicator was positive for several hydrocarbon substrates. The consortia were also able to produce biosurfactants, with biosynthesis of iturin, lichnysin, and surfactin among the more abundant pathways. A microcosms assay followed by gas chromatography analysis showed the efficacy of the consortia in degrading alkanes, as we observed a reduction of around 66% and 30% for each consortium in total alkanes. These data suggest the potential use of these consortia in the bioremediation of drilling residue based on autochthonous bioaugmentation.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Genoma Bacteriano , Metagenoma , Consórcios Microbianos , Petróleo/metabolismo , Alcanos/metabolismo , Hidrocarbonetos/metabolismo
4.
BMC Microbiol ; 17(1): 168, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28750626

RESUMO

BACKGROUND: Bacterial and Archaeal communities have a complex, symbiotic role in crude oil bioremediation. Their biosurfactants and degradation enzymes have been in the spotlight, mainly due to the awareness of ecosystem pollution caused by crude oil accidents and their use. Initially, the scientific community studied the role of individual microbial species by characterizing and optimizing their biosurfactant and oil degradation genes, studying their individual distribution. However, with the advances in genomics, in particular with the use of New-Generation-Sequencing and Metagenomics, it is now possible to have a macro view of the complex pathways related to the symbiotic degradation of hydrocarbons and surfactant production. It is now possible, although more challenging, to obtain the DNA information of an entire microbial community before automatically characterizing it. By characterizing and understanding the interconnected role of microorganisms and the role of degradation and biosurfactant genes in an ecosystem, it becomes possible to develop new biotechnological approaches for bioremediation use. This paper analyzes 46 different metagenome samples, spanning 20 biomes from different geographies obtained from different research projects. RESULTS: A metagenomics bioinformatics pipeline, focused on the biodegradation and biosurfactant-production pathways, genes and organisms, was applied. Our main results show that: (1) surfactation and degradation are correlated events, and therefore should be studied together; (2) terrestrial biomes present more degradation genes, especially cyclic compounds, and less surfactation genes, when compared to water biomes; and (3) latitude has a significant influence on the diversity of genes involved in biodegradation and biosurfactant production. This suggests that microbiomes found near the equator are richer in genes that have a role in these processes and thus have a higher biotechnological potential. CONCLUSION: In this work we have focused on the biogeographical distribution of hydrocarbon degrading and biosurfactant producing genes. Our principle results can be seen as an important step forward in the application of bioremediation techniques, by considering the biostimulation, optimization or manipulation of a starting microbial consortia from the areas with higher degradation and biosurfactant producing genetic diversity.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Hidrocarbonetos/metabolismo , Petróleo/microbiologia , Tensoativos/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Ecossistema , Metagenômica , Consórcios Microbianos , Filogenia
5.
Artigo em Inglês | MEDLINE | ID: mdl-25833955

RESUMO

Crude oil extraction, transportation and use provoke the contamination of countless ecosystems. Therefore, bioremediation through surfactants mobilization or biodegradation is an important subject, both economically and environmentally. Bioremediation research had a great boost with the recent advances in Metagenomics, as it enabled the sequencing of uncultured microorganisms providing new insights on surfactant-producing and/or oil-degrading bacteria. Many research studies are making available genomic data from unknown organisms obtained from metagenomics analysis of oil-contaminated environmental samples. These new datasets are presently demanding the development of new tools and data repositories tailored for the biological analysis in a context of bioremediation data analysis. This work presents BioSurfDB, www.biosurfdb.org, a curated relational information system integrating data from: (i) metagenomes; (ii) organisms; (iii) biodegradation relevant genes; proteins and their metabolic pathways; (iv) bioremediation experiments results, with specific pollutants treatment efficiencies by surfactant producing organisms; and (v) a biosurfactant-curated list, grouped by producing organism, surfactant name, class and reference. The main goal of this repository is to gather information on the characterization of biological compounds and mechanisms involved in biosurfactant production and/or biodegradation and make it available in a curated way and associated with a number of computational tools to support studies of genomic and metagenomic data.


Assuntos
Bases de Dados Genéticas , Metagenoma , Metagenômica , Microbiologia do Solo , Tensoativos , Biodegradação Ambiental , Petróleo/metabolismo , Poluição por Petróleo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA