Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
Front Immunol ; 15: 1307546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361945

RESUMO

Zika virus (ZIKV) is a re-emerging pathogen with high morbidity associated to congenital infection. Despite the scientific advances since the last outbreak in the Americas, there are no approved specific treatment or vaccines. As the development of an effective prophylactic approach remains unaddressed, DNA vaccines surge as a powerful and attractive candidate due to the efficacy of sequence optimization in achieving strong immune response. In this study, we developed four DNA vaccine constructs encoding the ZIKV prM/M (pre-membrane/membrane) and E (envelope) proteins in conjunction with molecular adjuvants. The DNA vaccine candidate (called ZK_ΔSTP), where the entire membrane-anchoring regions were completely removed, was far more immunogenic compared to their counterparts. Furthermore, inclusion of the tPA-SP leader sequence led to high expression and secretion of the target vaccine antigens, therefore contributing to adequate B cell stimulation. The ZK_ΔSTP vaccine induced high cellular and humoral response in C57BL/6 adult mice, which included high neutralizing antibody titers and the generation of germinal center B cells. Administration of ZK-ΔSTP incorporating aluminum hydroxide (Alum) adjuvant led to sustained neutralizing response. In consistency with the high and long-term protective response, ZK_ΔSTP+Alum protected adult mice upon viral challenge. Collectively, the ZK_ΔSTP+Alum vaccine formulation advances the understanding of the requirements for a successful and protective vaccine against flaviviruses and is worthy of further translational studies.


Assuntos
Compostos de Alúmen , Vacinas de DNA , Vacinas Virais , Infecção por Zika virus , Zika virus , Animais , Camundongos , Zika virus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas do Envelope Viral/genética , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
3.
Cells ; 11(21)2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36359755

RESUMO

COVID-19, the infectious disease caused by SARS-CoV-2, has spread on a pandemic scale. The viral infection can evolve asymptomatically or can generate severe symptoms, influenced by the presence of comorbidities. Lymphopenia based on the severity of symptoms in patients affected with COVID-19 is frequent. However, the profiles of CD4+ and CD8+ T cells regarding cytotoxicity and antiviral factor expression have not yet been completely elucidated in acute SARS-CoV-2 infections. The purpose of this study was to evaluate the phenotypic and functional profile of T lymphocytes in patients with moderate and severe/critical COVID-19. During the pandemic period, we analyzed a cohort of 62 confirmed patients with SARS-CoV-2 (22 moderate cases and 40 severe/critical cases). Notwithstanding lymphopenia, we observed an increase in the expression of CD28, a co-stimulator molecule, and activation markers (CD38 and HLA-DR) in T lymphocytes as well as an increase in the frequency of CD4+ T cells, CD8+ T cells, and NK cells that express the immunological checkpoint protein PD-1 in patients with a severe/critical condition compared to healthy controls. Regarding the cytotoxic profile of peripheral blood mononuclear cells, an increase in the response of CD4+ T cells was already observed at the baseline level and scarcely changed upon PMA and Ionomycin stimulation. Meanwhile, CD8+ T lymphocytes decreased the cytotoxic response, evidencing a profile of exhaustion in patients with severe COVID-19. As observed by t-SNE, there were CD4+ T-cytotoxic and CD8+ T with low granzyme production, evidencing their dysfunction in severe/critical conditions. In addition, purified CD8+ T lymphocytes from patients with severe COVID-19 showed increased constitutive expression of differentially expressed genes associated with the caspase pathway, inflammasome, and antiviral factors, and, curiously, had reduced expression of TNF-α. The cytotoxic profile of CD4+ T cells may compensate for the dysfunction/exhaustion of TCD8+ in acute SARS-CoV-2 infection. These findings may provide an understanding of the interplay of cytotoxicity between CD4+ T cells and CD8+ T cells in the severity of acute COVID-19 infection.


Assuntos
COVID-19 , Linfopenia , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Linfócitos T CD8-Positivos , Linfopenia/metabolismo , Antivirais/metabolismo
4.
Front Immunol ; 13: 1012027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248842

RESUMO

Ectonucleotidases modulate inflammatory responses by balancing extracellular ATP and adenosine (ADO) and might be involved in COVID-19 immunopathogenesis. Here, we explored the contribution of extracellular nucleotide metabolism to COVID-19 severity in mild and severe cases of the disease. We verified that the gene expression of ectonucleotidases is reduced in the whole blood of patients with COVID-19 and is negatively correlated to levels of CRP, an inflammatory marker of disease severity. In line with these findings, COVID-19 patients present higher ATP levels in plasma and reduced levels of ADO when compared to healthy controls. Cell type-specific analysis revealed higher frequencies of CD39+ T cells in severely ill patients, while CD4+ and CD8+ expressing CD73 are reduced in this same group. The frequency of B cells CD39+CD73+ is also decreased during acute COVID-19. Interestingly, B cells from COVID-19 patients showed a reduced capacity to hydrolyze ATP into ADP and ADO. Furthermore, impaired expression of ADO receptors and a compromised activation of its signaling pathway is observed in COVID-19 patients. The presence of ADO in vitro, however, suppressed inflammatory responses triggered in patients' cells. In summary, our findings support the idea that alterations in the metabolism of extracellular purines contribute to immune dysregulation during COVID-19, possibly favoring disease severity, and suggest that ADO may be a therapeutic approach for the disease.


Assuntos
COVID-19 , Adenosina/metabolismo , Difosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Humanos , Purinas , Índice de Gravidade de Doença , Transdução de Sinais
5.
Vaccines (Basel) ; 10(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36016134

RESUMO

Neonates have a limited adaptive response of plasma cells, germinal center (GC) B cells, and T follicular helper cells (TFH). As neonatal vaccination can be an important tool for AIDS prevention, these limitations need to be overcome. Chimeric DNA vaccine encoding p55Gag HIV-1 protein conjugated with lysosomal-associated membrane protein 1 (LAMP-1) has been described as immunogenic in the neonate period. Herein, we investigated the immunologic mechanisms involved in neonatal immunization with a LAMP-1/p55Gag (LAMP/Gag) DNA vaccine in a C57BL/6 mouse background. Neonatal LAMP/Gag vaccination induced strong Gag-specific T-cell response until adulthood and elevated levels of anti-Gag IgG antibodies. We also demonstrated for the first time that the immunogenicity of the neonatal period with LAMP/Gag is due to the induction of high-affinity anti-p24 IgG antibodies and long-term plasma cells. Together with that, there is the generation of early TFH cells and the formation of GC sites with the upregulation of activation-induced cytidine deaminase (AID) enzyme mRNA and protein expression in draining lymph nodes after neonatal LAMP/Gag vaccination. These findings underscore that the LAMP-1 strategy in the chimeric vaccine could be useful to enhance antibody production even in the face of neonatal immaturity, and they contribute to the development of new vaccine approaches for other emerging pathogens at an early stage of life.

6.
Life (Basel) ; 11(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34685377

RESUMO

Coronavirus disease 2019 (COVID-19) caused millions of deaths worldwide. COVID-19's clinical manifestations range from no symptoms to a severe acute respiratory syndrome, which can result in multiple organ failure, sepsis, and death. Severe COVID-19 patients develop pulmonary and extrapulmonary infections, with a hypercoagulable state. Several inflammatory or coagulatory biomarkers are currently used with predictive values for COVID-19 severity and prognosis. In this manuscript, we investigate if a combination of coagulatory and inflammatory biomarkers could provide a better biomarker with predictive value for COVID-19 patients, being able to distinguish between patients that would develop a moderate or severe COVID-19 and predict the disease outcome. We investigated 306 patients with COVID-19, confirmed by severe acute respiratory syndrome coronavirus 2 RNA detected in the nasopharyngeal swab, and retrospectively analyzed the laboratory data from the first day of hospitalization. In our cohort, biomarkers such as neutrophil count and neutrophil-to-lymphocyte ratio from the day of hospitalization could predict if the patient would need to be transferred to the intensive care unit but failed to identify the patients´ outcomes. The ratio between platelets and inflammatory markers such as creatinine, C-reactive protein, and urea levels is associated with patient outcomes. Finally, the platelet/neutrophil-to-lymphocyte ratio on the first day of hospitalization can be used with predictive value as a novel severity and lethality biomarker in COVID-19. These new biomarkers with predictive value could be used routinely to stratify the risk in COVID-19 patients since the first day of hospitalization.

7.
Front Nutr ; 8: 674258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557509

RESUMO

Nutrition is an important tool that can be used to modulate the immune response during infectious diseases. In addition, through diet, important substrates are acquired for the biosynthesis of regulatory molecules in the immune response, influencing the progression and treatment of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). In this way, nutrition can promote lung health status. A range of nutrients, such as vitamins (A, C, D, and E), minerals (zinc, selenium, iron, and magnesium), flavonoids and fatty acids, play important roles in reducing the risk of pulmonary chronic diseases and viral infections. Through their antioxidant and anti-inflammatory effects, nutrients are associated with better lung function and a lower risk of complications since they can decrease the harmful effects from the immune system during the inflammatory response. In addition, bioactive compounds can even contribute to epigenetic changes, including histone deacetylase (HDAC) modifications that inhibit the transcription of proinflammatory cytokines, which can contribute to the maintenance of homeostasis in the context of infections and chronic inflammatory diseases. These nutrients also play an important role in activating immune responses against pathogens, which can help the immune system during infections. Here, we provide an updated overview of the roles played by dietary factors and how they can affect respiratory health. Therefore, we will show the anti-inflammatory role of flavonoids, fatty acids, vitamins and microbiota, important for the control of chronic inflammatory diseases and allergies, in addition to the antiviral role of vitamins, flavonoids, and minerals during pulmonary viral infections, addressing the mechanisms involved in each function. These mechanisms are interesting in the discussion of perspectives associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its pulmonary complications since patients with severe disease have vitamins deficiency, especially vitamin D. In addition, researches with the use of flavonoids have been shown to decrease viral replication in vitro. This way, a full understanding of dietary influences can improve the lung health of patients.

8.
Trop Med Infect Dis ; 6(1)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579042

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has infected over 90 million people worldwide, therefore it is considered a pandemic. SARS-CoV-2 infection can lead to severe pneumonia, acute respiratory distress syndrome (ARDS), septic shock, and/or organ failure. Individuals receiving a heart transplantation (HT) may be at higher risk of adverse outcomes attributable to COVID-19 due to immunosuppressives, as well as concomitant infections that may also influence the prognoses. Herein, we describe the first report of two cases of HT recipients with concomitant infections by SARS-CoV-2, Trypanosoma cruzi, and cytomegalovirus (CMV) dissemination, from the first day of hospitalization due to COVID-19 in the intensive care unit (ICU) until the death of the patients.

9.
Crit Rev Food Sci Nutr ; 61(13): 2262-2276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32539446

RESUMO

The current coronavirus disease-2019 (COVID-19) pandemic presents a huge challenge for health-care systems worldwide. Many different risk factors are associated with disease severity, such as older age, diabetes, hypertension, and most recently obesity. The incidence of obesity has been on the rise for the past 25 years, reaching over 2 billion people throughout the world, and obesity itself could be considered a pandemic. In this review, we summarize aspects involved with obesity, such as changes in the immune response, nutritional factors, physiological factors, and the gut-lung axis, that impact the viral response and the COVID-19 prognosis.


Assuntos
COVID-19 , Idoso , Humanos , Obesidade/epidemiologia , Pandemias , Fatores de Risco , SARS-CoV-2
10.
Front Med (Lausanne) ; 7: 580677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178720

RESUMO

Common clinical features of patients with Coronavirus disease-2019 (COVID-19) vary from fever, to acute severe respiratory distress syndrome. Several laboratory parameters are reported as indicators of COVID-19 severity. We hereby describe the possible novel severity biomarkers for COVID-19, CD11b+CD33+HLA-DR-CD14+ cells and CD11b+CD33+HLA-DR-CD66b+ cells.

11.
Am J Trop Med Hyg ; 103(6): 2353-2356, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025877

RESUMO

American trypanosomiasis, also named Chagas disease (CD), is an anthropozoonosis caused by the protozoan parasite Trypanosoma cruzi. The disease affects millions of people worldwide, leading yearly to approximately 50,000 deaths. COVID-19, generated by SARS-CoV-2, can lead to lymphopenia and death. We hereby describe the first report of two patients with CD and COVID-19 coinfection, from hospitalization until patients' death.


Assuntos
COVID-19/diagnóstico , Cardiomiopatia Chagásica/diagnóstico , RNA Viral/genética , SARS-CoV-2/patogenicidade , Trypanosoma cruzi/patogenicidade , Idoso , Brasil , COVID-19/parasitologia , COVID-19/patologia , COVID-19/virologia , Teste para COVID-19/métodos , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Cardiomiopatia Chagásica/virologia , Coinfecção , Progressão da Doença , Evolução Fatal , Feminino , Hospitalização , Humanos , Masculino , Marca-Passo Artificial , SARS-CoV-2/genética , Tomografia Computadorizada por Raios X , Trypanosoma cruzi/genética
12.
Front Immunol ; 11: 175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117303

RESUMO

During pregnancy, the organization of complex tolerance mechanisms occurs to assure non-rejection of the semiallogeneic fetus. Pregnancy is a period of vulnerability to some viral infections, mainly during the first and second trimesters, that may cause congenital damage to the fetus. Recently, Zika virus (ZIKV) infection has gained great notoriety due to the occurrence of congenital ZIKV syndrome, characterized by fetal microcephaly, which results from the ability of ZIKV to infect placental cells and neural precursors in the fetus. Importantly, in addition to the congenital effects, studies have shown that perinatal ZIKV infection causes a number of disorders, including maculopapular rash, conjunctivitis, and arthralgia. In this paper, we contextualize the immunological aspects involved in the maternal-fetal interface and vulnerability to ZIKV infection, especially the alterations resulting in perinatal outcomes. This highlights the need to develop protective maternal vaccine strategies or interventions that are capable of preventing fetal or even neonatal infection.


Assuntos
Troca Materno-Fetal/imunologia , Complicações Infecciosas na Gravidez/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Feminino , Feto/imunologia , Feto/virologia , Humanos , Microcefalia/imunologia , Microcefalia/virologia , Placenta/imunologia , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Zika virus/fisiologia , Infecção por Zika virus/virologia
13.
Front Physiol ; 11: 637627, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584342

RESUMO

The severe respiratory and systemic disease named coronavirus disease-2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, the COVID-19 pandemic presents a huge social and health challenge worldwide. Many different risk factors are associated with disease severity, such as systemic arterial hypertension, diabetes mellitus, obesity, older age, and other co-infections. Other respiratory diseases such as chronic obstructive pulmonary disease (COPD) and smoking are common comorbidities worldwide. Previous investigations have identified among COVID-19 patients smokers and COPD patients, but recent investigations have questioned the higher risk among these populations. Nevertheless, previous reports failed to isolate smokers and COPD patients without other comorbidities. We performed a longitudinal evaluation of the disease course of smokers, former smokers, and COPD patients with COVID-19 without other comorbidities, from hospitalization to hospital discharge. Although no difference between groups was observed during hospital admission, smokers and COPD patients presented an increase in COVID-19-associated inflammatory markers during the disease course in comparison to non-smokers and former smokers. Our results demonstrated that smoking and COPD are risk factors for severe COVID-19 with possible implications for the ongoing pandemic.

14.
Front.med. ; 7: 1-2, 2020.
Artigo em Português | LILACS, CONASS, Coleciona SUS (Brasil), SES-SP, SESSP-IALPROD, SES-SP | ID: biblio-1416578

RESUMO

Common clinical features of patients with Coronavirus disease-2019 (COVID-19) vary from fever, to acute severe respiratory distress syndrome. Several laboratory parameters are reported as indicators of COVID-19 severity. We hereby describe the possible novel severity biomarkers for COVID-19, CD11b+CD33+HLA-DR-CD14+ cells and CD11b+CD33+HLA-DR-CD66b+ cells.


Assuntos
Sangue , Antígenos HLA-DR , Coronavirus , Febre
15.
Sci Rep ; 9(1): 13721, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548589

RESUMO

Although the neonatal period is characterized by relative immunological immaturity, an inflammatory response due to Toll-like receptor (TLR) activation is observed. Histamine may be one of the factors playing a role in restraining inflammation during the early stages of life. Therefore, we evaluated the responsiveness of human cord blood cells to TLR4 agonists and the immunomodulatory function of histamine in the inflammatory response. Compared with adults, mononuclear cells (MNCs) from newborns (NBs) exhibit impaired production of IFN-γ-inducible chemokines, such as CXCL10 and CXCL9, upon lipopolysaccharide (LPS) stimulation. Notably, LPS induced a 5-fold increase in CCL2 secretion in NBs. Evaluation of the effect of histamine on LPS-induced CCL2 secretion showed an inhibitory effect in the majority of adults, whereas this effect was detectable in all NBs. Histamine receptor (HR) blockage revealed partial involvement of H1R, H2R and H4R in LPS-induced CCL2 inhibition in MNCs from both NBs and adults. As monocytes are the main type of mononuclear cell that produces CCL2, we evaluated genes related to TLR signaling upon LPS stimulation. Monocytes from NBs showed up-regulation of genes associated with JAK/STAT/NF-κB and IFN signaling. Some differentially expressed genes encoding proinflammatory factors were preferentially detected in LPS-activated monocytes from NBs, and markedly down-regulated by histamine. The immunomodulatory role of histamine on CCL2 and CXCL8 was detected at the transcript and protein levels. Our findings show that NBs have enhanced CCL2 responsiveness to LPS, and that histamine acts in immune homeostasis during the neonatal period to counterbalance the robustness of TLR stimulation.


Assuntos
Sangue Fetal/efeitos dos fármacos , Histamina/farmacologia , Inflamação/metabolismo , Monócitos/efeitos dos fármacos , Receptor 4 Toll-Like/agonistas , Adulto , Quimiocina CCL2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Sangue Fetal/metabolismo , Humanos , Imidazóis/farmacologia , Recém-Nascido , Interferon gama/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Monócitos/metabolismo , Quinolinas/farmacologia , Receptores Histamínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Mediators Inflamm ; 2018: 3067126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158832

RESUMO

Vitamin A metabolite retinoic acid (RA) plays important roles in cell growth, differentiation, organogenesis, and reproduction and a key role in mucosal immune responses. RA promotes dendritic cells to express CD103 and to produce RA, enhances the differentiation of Foxp3+ inducible regulatory T cells, and induces gut-homing specificity in T cells. Although vitamin A is crucial for maintaining homeostasis at the intestinal barrier and equilibrating immunity and tolerance, including gut dysbiosis, retinoids perform a wide variety of functions in many settings, such as the central nervous system, skin aging, allergic airway diseases, cancer prevention and therapy, and metabolic diseases. The mechanism of RA is interesting to explore as both a mucosal adjuvant and a combination therapy with other effective agents. Here, we review the effect of RA on innate and adaptive immunity with a special emphasis on inflammatory status.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Biológicos
17.
Front Immunol ; 8: 718, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28670318

RESUMO

Asthma is an allergic lung disease and, when associated to cigarette smoke exposition, some patients show controversial signs about lung function and other inflammatory mediators. Epidemiologic and experimental studies have shown both increasing and decreasing inflammation in lungs of subjects with asthma and exposed to cigarette smoke. Therefore, in this study, we analyzed how cigarette smoke affects pro-inflammatory and anti-inflammatory mediators in a murine model of allergic pulmonary inflammation. We sensitized Balb/c mice to ovalbumin (OVA) with two intraperitoneal injections. After sensitization, the animals were exposed to cigarette smoke twice a day, 30 min per exposition, for 12 consecutive days. In order to drive the cell to the lungs, four aerosol challenges were performed every 48 h with the same allergen of sensitization. OVA sensitization and challenge developed pulmonary Th2 characteristic response with increased airway responsiveness, remodeling, increased levels of IgE, interleukin (IL)-4, and IL-13. Cigarette smoke, unexpectedly, reduced the levels of IL-4 and IL-13 and simultaneously decreased anti-inflammatory cytokines as IL-10 and transforming growth factor (TGF)-ß in sensitized and challenged animals. OVA combined with cigarette smoke exposition decreased the number of eosinophils in bronchoalveolar lavage and increased the number of neutrophils in lung. The combination of cigarette smoke and lung allergy increased recruitment of lymphoid dendritic cells (DCs) into lymph nodes, which may be the leading cause to an increase in number and activation of CD8+ T cells in lungs. In addition, lung allergy and cigarette smoke exposure decreased an important regulatory subtype of DC such as plasmacytoid DC as well as its activation by expression of CD86, PDL2, and ICOSL, and it was sufficient to decrease T regs influx and anti-inflammatory cytokines release such as IL-10 and TGF-ß but not enough to diminish the structural changes. In conclusion, we observed, in this model, that OVA sensitization and challenge combined with cigarette smoke exposure leads to mischaracterization of the Th2 response of asthma by decreasing the number of eosinophils, IL-4, and IL-13 and increasing number of neutrophils, which is related to the increased number of CD8ɑ+ DCs and CD8+ T cells as well as reduction of the regulatory cells and its released cytokines.

18.
Artigo em Inglês | MEDLINE | ID: mdl-28428801

RESUMO

BACKGROUND: The mechanisms through which allergies can be inhibited after preconception immunization with allergens are not fully understood. We aimed to evaluate whether maternal immunization can induce a regulatory B (B10) cell population in offspring in concert with allergy inhibition. METHODS: C57BL/6 females were or were not immunized with OVA and were mated with normal WT males. Their offspring were evaluated at 3 days of age or 20 days after neonatal immunization. Human peripheral B cells from atopic and non-atopic individuals were also evaluated. RESULTS: Preconception OVA immunization induced B10 cells in offspring, and IL-10 production appeared to be critical for FcγRIIB upregulation in offspring B cells. Murine and human IL-10-producing B cells responded in vitro to IgG according to the atopic repertoire of the cells. CONCLUSIONS: Our results reveal that maternal immunization induces allergen-specific B10 cells in offspring and a pivotal role for the IgG repertoire in IL-10 production by murine and human B cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA