RESUMO
The expression of the inositol 1,4,5-trisphosphate receptor type 3 (ITRP3) in hepatocytes is a common event in the pathogenesis of hepatocellular carcinoma (HCC), regardless of the type of underlying liver disease. However, it is not known whether ITPR3 expression in hepatocytes is involved in tumor maintenance. The aim of the present study was to determine whether there is an association between ITPR3 expression and clinical and morphological parameters using HCC samples obtained from liver explants from patients (n=53) with different etiologies of underlying chronic liver disease (CLD). ITPR3 expression, mitosis and apoptosis were analyzed in human liver samples by immunohistochemistry. Clinical and event-free survival data were combined to assess the relationship between ITPR3 and liver cancer growth in patients. RNA sequencing analysis was performed to identify apoptotic genes altered by ITPR3 expression in a liver tumor cell line. ITPR3 was highly expressed in HCC tumor cells relative to adjacent CLD tissue and healthy livers. There was an inverse correlation between ITPR3 expression and mitotic and apoptotic indices in HCC, suggesting that ITPR3 contributed to the maintenance of HCC by promoting resistance to apoptosis. This was confirmed by the upregulation of CTSB, CHOP and GADD45, genes involved in the apoptotic pathway in HCC. The expression of ITPR3 in the liver may be a promising prognostic marker of HCC.
RESUMO
Hepatic ischemia-reperfusion injury is seen in a variety of clinical conditions, including hepatic thrombosis, systemic hypotension, and liver transplantation. Calcium (Ca2+) signaling mediates several pathophysiological processes in the liver, but it is not known whether and how intracellular Ca2+ channels are involved in the hepatocellular events secondary to ischemia-reperfusion. Using an animal model of hepatic ischemia-reperfusion injury, we observed a progressive increase in expression of the type 3 isoform of the inositol trisphosphate receptor (ITPR3), an intracellular Ca2+ channel that is not normally expressed in healthy hepatocytes. ITPR3 expression was upregulated, at least in part, by a combination of demethylation of the ITPR3 promoter region and the increased transcriptional activity of the nuclear factor of activated T-cells (NFAT). Additionally, expression of pro-inflammatory interleukins and necrotic surface area were less pronounced in livers of control animals compared to liver-specific ITPR3 KO mice subjected to hepatic damage. Corroborating these findings, ITPR3 expression and activation of NFAT were observed in hepatocytes of liver biopsies from patients who underwent liver ischemia caused by thrombosis after organ transplant. Together, these results are consistent with the idea that ITPR3 expression in hepatocytes plays a protective role during hepatic injury induced by ischemia-reperfusion.
Assuntos
Hepatócitos/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fígado/metabolismo , Fígado/patologia , Substâncias Protetoras/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Sinalização do Cálcio , Desmetilação do DNA , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Regiões Promotoras Genéticas/genéticaRESUMO
OBJECTIVES: The aim of this study was to extend our knowledge about the mechanism involved in the gastroprotective effect of P1G10, a proteolytic fraction rich in cysteine proteinases from Vasconcellea cundinamarcensis (syn. Carica candamarcensis) latex, which demonstrated gastric healing and protection activities in rats. METHODS: Wistar rats were submitted to gastric lesions by indomethacin and treated with P1G10 (10 mg/kg). Free thiol groups and prostaglandin E2 content were measured in gastric mucosal and gastrin levels in blood samples. To evaluate the participation of nitric oxide (NO) or proteolytic activity of P1G10 on its gastroprotective effect, animals were treated with an inhibitor of NO production (L-NAME) or the fraction inhibited by iodoacetamide, respectively. Gastric secretion study (acidity and pepsin activity) was also performed. KEY FINDINGS: P1G10 (10 mg/kg) inhibited the occurrence of gastric lesions by indomethacin, restored the free thiol groups content on gastric mucosa and increased moderately prostaglandin E2 levels (34%). Furthermore, the treatment decreased the gastrin levels (95%), suggesting a possible modulation of secretory activity. This effect was accordant with attenuation of gastric acidity (42%) and pepsin activity (69%) seen in animals subjected to pyloric ligation. The inhibition of NO production or the proteolytic activity of P1G10 does not affect the gastroprotective effect. CONCLUSIONS: These results can explain the gastroprotective activity of P1G10 and serve a basis for further studies of this active principle.