Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(47): e202400855, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39031737

RESUMO

Hydrogels with cell adhesive moieties stand out as promising materials to enhance tissue healing and regeneration. Nonetheless, bacterial infections of the implants represent an unmet major concern. In the present work, we developed an alginate hydrogel modified with a multifunctional peptide containing the RGD cell adhesive motif in combination with an antibacterial peptide derived from the 1-11 region of lactoferrin (LF). The RGD-LF branched peptide was successfully anchored to the alginate backbone by carbodiimide chemistry, as demonstrated by 1H NMR and fluorescence measurements. The functionalized hydrogel presented desirable physicochemical properties (porosity, swelling and rheological behavior) to develop biomaterials for tissue engineering. The viability of mesenchymal stem cells (MSCs) on the peptide-functionalized hydrogels was excellent, with values higher than 85 % at day 1, and higher than 95 % after 14 days in culture. Moreover, the biological characterization demonstrated the ability of the hydrogels to significantly enhance ALP activity of MSCs as well as to decrease bacterial colonization of both Gram-positive and Gram-negative models. Such results prove the potential of the functionalized hydrogels as novel biomaterials for tissue engineering, simultaneously displaying cell adhesive activity and the capacity to prevent bacterial contamination, a dual bioactivity commonly not found for these types of hydrogels.


Assuntos
Alginatos , Adesão Celular , Hidrogéis , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Alginatos/química , Adesão Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Engenharia Tecidual , Peptídeos/química , Peptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
2.
Adv Healthc Mater ; 13(9): e2302571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38014647

RESUMO

The design of hydrogels as mimetics of tissues' matrices typically disregards the viscous nature of native tissues and focuses only on their elastic properties. In the case of stem cell chondrogenesis, this has led to contradictory results, likely due to unreported changes in the matrices' viscous modulus. Here, by employing isoelastic matrices with Young's modulus of ≈12 kPa, variations in viscous properties alone (i.e., loss tangent between 0.1 and 0.25) are demonstrated to be sufficient to drive efficient growth factor-free chondrogenesis of human mesenchymal stem cells, both in 2D and 3D cultures. The increase of the viscous component of RGD-functionalized polyacrylamide or polyethylene glycol maleimide hydrogels promotes a phenotype with reduced adhesion, alters mechanosensitive signaling, and boosts cell-cell contacts. In turn, this upregulates the chondrogenic transcription factor SOX9 and supports neocartilage formation, demonstrating that the mechanotransductive response to the viscous nature of the matrix can be harnessed to direct cell fate.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Humanos , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Células-Tronco , Materiais Biocompatíveis/metabolismo , Diferenciação Celular , Células Cultivadas
3.
Front Bioeng Biotechnol ; 11: 1192436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324414

RESUMO

Mimicking bone extracellular matrix (ECM) is paramount to develop novel biomaterials for bone tissue engineering. In this regard, the combination of integrin-binding ligands together with osteogenic peptides represents a powerful approach to recapitulate the healing microenvironment of bone. In the present work, we designed polyethylene glycol (PEG)-based hydrogels functionalized with cell instructive multifunctional biomimetic peptides (either with cyclic RGD-DWIVA or cyclic RGD-cyclic DWIVA) and cross-linked with matrix metalloproteinases (MMPs)-degradable sequences to enable dynamic enzymatic biodegradation and cell spreading and differentiation. The analysis of the intrinsic properties of the hydrogel revealed relevant mechanical properties, porosity, swelling and degradability to engineer hydrogels for bone tissue engineering. Moreover, the engineered hydrogels were able to promote human mesenchymal stem cells (MSCs) spreading and significantly improve their osteogenic differentiation. Thus, these novel hydrogels could be a promising candidate for applications in bone tissue engineering, such as acellular systems to be implanted and regenerate bone or in stem cells therapy.

4.
Adv Healthc Mater ; 11(20): e2201339, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35941083

RESUMO

Cell-material interactions are regulated by mimicking bone extracellular matrix on the surface of biomaterials. In this regard, reproducing the extracellular conditions that promote integrin and growth factor (GF) signaling is a major goal to trigger bone regeneration. Thus, the use of synthetic osteogenic domains derived from bone morphogenetic protein 2 (BMP-2) is gaining increasing attention, as this strategy is devoid of the clinical risks associated with this molecule. In this work, the wrist and knuckle epitopes of BMP-2 are screened to identify peptides with potential osteogenic properties. The most active sequences (the DWIVA motif and its cyclic version) are combined with the cell adhesive RGD peptide (linear and cyclic variants), to produce tailor-made biomimetic peptides presenting the bioactive cues in a chemically and geometrically defined manner. Such multifunctional peptides are next used to functionalize titanium surfaces. Biological characterization with mesenchymal stem cells demonstrates the ability of the biointerfaces to synergistically enhance cell adhesion and osteogenic differentiation. Furthermore, in vivo studies in rat calvarial defects prove the capacity of the biomimetic coatings to improve new bone formation and reduce fibrous tissue thickness. These results highlight the potential of mimicking integrin-GF signaling with synthetic peptides, without the need for exogenous GFs.


Assuntos
Proteína Morfogenética Óssea 2 , Osteogênese , Ratos , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/química , Titânio , Diferenciação Celular , Matriz Extracelular , Regeneração Óssea , Peptídeos/farmacologia , Peptídeos/química , Materiais Biocompatíveis , Integrinas , Epitopos
5.
J Pept Sci ; 28(1): e3335, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34031952

RESUMO

Improving cell-material interactions is a major goal in tissue engineering. In this regard, functionalization of biomaterials with cell instructive molecules from the extracellular matrix stands out as a powerful strategy to enhance their bioactivity and achieve optimal tissue integration. However, current functionalization strategies, like the use of native full-length proteins, are associated with drawbacks, thus urging the need of developing new methodologies. In this regard, the use of synthetic peptides encompassing specific bioactive regions of proteins represents a promising alternative. In particular, the combination of peptide sequences with complementary or synergistic effects makes it possible to address more than one biological target at the biomaterial surface. In this review, an overview of the main strategies using peptides to install multifunctionality on biomaterials is presented, mostly focusing on the combination of the RGD motif with other peptides sequences. The evolution of these approaches, starting from simple methods, like using peptide mixtures, to more advanced systems of peptide presentation, with very well defined chemical properties, are explained. For each system of peptide's presentation, three main aspects of multifunctionality-improving receptor selectivity, mimicking the extracellular matrix and preventing bacterial colonization while improving cell adhesion-are highlighted.


Assuntos
Materiais Biocompatíveis , Peptídeos , Adesão Celular
6.
Chem Commun (Camb) ; 57(8): 982-985, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33438695

RESUMO

A novel and versatile toolkit approach for the functionalization of biomaterials of different nature is described. This methodology is based on the solid-phase conjugation of specific anchoring units onto a resin-bound azido-functionalized peptide by using click chemistry. A synergistic multifunctional peptidic scaffold with cell adhesive properties was used as a model compound to showcase the versatility of this new approach. Titanium, gold and polylactic acid surfaces were biofunctionalized by this method, as validated by physicochemical surface characterization with XPS. In vitro assays using mesenchymal stem cells showed enhanced cell adhesion on the functionalized samples, proving the capacity of this strategy to efficiently bioactivate different types of biomaterials.


Assuntos
Materiais Biocompatíveis/química , Peptídeos/química , Química Click , Conformação Proteica
7.
Chembiochem ; 22(5): 839-844, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33094896

RESUMO

Bacterial infections and incomplete biomaterial integration are major problems that can lead to the failure of medical implants. However, simultaneously addressing these two issues remains a challenge. Here, we present a chemical peptide library based on a multifunctional platform containing the antimicrobial peptide LF1-11 and the cell-adhesive motif RGD. The scaffolds were customized with catechol groups to ensure straightforward functionalization of the implant surface, and linkers of different length to assess the effect of peptide accessibility on the biological response. The peptidic platforms significantly improved the adhesion of mesenchymal stem cells and showed antimicrobial effects against Staphylococcus aureus. Of note is that peptides bearing spacers that were too long displayed the lowest efficiency. Subsequently, we designed a platform replacing linear RGD by cyclic RGD; this further enhanced eukaryotic cell adhesion while retaining excellent antimicrobial properties, thus being a suitable candidate for tissue engineering applications.


Assuntos
Antibacterianos/farmacologia , Adesão Celular , Células-Tronco Mesenquimais/fisiologia , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos
8.
Adv Healthc Mater ; 10(7): e2001757, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33336559

RESUMO

Recreating the healing microenvironment is essential to regulate cell-material interactions and ensure the integration of biomaterials. To repair bone, such bioactivity can be achieved by mimicking its extracellular matrix (ECM) and by stimulating integrin and growth factor (GF) signaling. However, current approaches relying on the use of GFs, such as bone morphogenetic protein 2 (BMP-2), entail clinical risks. Here, a biomimetic peptide integrating the RGD cell adhesive sequence and the osteogenic DWIVA motif derived from the wrist epitope of BMP-2 is presented. The approach offers the advantage of having a spatial control over the single binding of integrins and BMP receptors. Such multifunctional platform is designed to incorporate 3,4-dihydroxyphenylalanine to bind metallic oxides with high affinity in a one step process. Functionalization of glass substrates with the engineered peptide is characterized by physicochemical methods, proving a successful surface modification. The biomimetic interfaces significantly improve the adhesion of C2C12 cells, inhibit myotube formation, and activate the BMP-dependent signaling via p38. These effects are not observed on surfaces displaying only one bioactive motif, a mixture of both motifs or soluble DWIVA. These data prove the biological potential of recreating the ECM and engaging in integrin and GF crosstalk via molecular-based mimics.


Assuntos
Biomimética , Integrinas , Adesão Celular , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA