RESUMO
This chapter focuses on the interplay between Leishmania parasites and their host, particularly on Leishmania RNA virus (LRVs) and extracellular vesicles (EVs) in modulating host-pathogen interactions. Leishmania EVs have been shown to facilitate gene transfer, including drug-resistance genes, enhancing the parasites' survival and resistance to antileishmanial therapeutics. These EVs also play a significant role in host immune modulation by altering cytokine production in macrophages and promoting an anti-inflammatory environment that favours parasitic persistence. The presence of virulence factors such as GP63 within these EVs further underscores their role in the parasite's immunopathogenesis. Over the last few decades, LRVs have been established as drivers of the severity and persistence of leishmaniasis by exacerbating inflammatory responses and potentially influencing treatment outcomes. This chapter discusses the evolutionary origins and classification of these viruses, and explores their role in parasitic pathogenicity, highlighting their ubiquity across protozoan parasites and their impact on disease progression.
Assuntos
Exossomos , Vesículas Extracelulares , Leishmania , Leishmaniose , Leishmaniavirus , Vesículas Extracelulares/metabolismo , Leishmaniavirus/metabolismo , Humanos , Exossomos/metabolismo , Leishmaniose/imunologia , Animais , Progressão da DoençaRESUMO
Introduction: Exosomes produced by the protozoan parasite Leishmania (LeishEXO) are well-established drivers of virulence, though mechanisms underlying their exacerbation of experimental leishmaniasis remain elusive. Expression of Annexin A1 (ANXA1), a protein implicated in exosome-mediated pathologies and viral internalization, has been shown to correlate with cutaneous leishmaniasis severity. Given ANXA1's regulation of myeloid cells - the canonical hosts for Leishmania - we studied the potential role of ANXA1 and its receptors FPR1/2 in exerting LeishEXO's effects. Methods: Murine and in vitro ANXA1-/- models were used to study the generation of protective TH1 responses during experimental L. major infection with and without LeishEXO. Recruitment of inflammatory cells was assessed using a peritoneal cell recruitment assay and immunophenotyping, and production of inflammatory mediators was measured using a cytokine and chemokine array. Treatment of experimental models with FPR2 antagonist WRW4 and FPR1/2 agonist WKYMVm was used to delineate the role of the FPR/ANXA1 axis in LeishEXO-mediated hyperpathogenesis. Results: We established that ANXA1 deficiency prohibits LeishEXO-mediated pathogenesis and myeloid cell infection, with minimal alterations to adaptive and innate immune phenotypes. FPR2 blockade with WRW4 similarly inhibited leishmanial hyperpathogenesis, while direct activation of FPRs with WKYMVm enhanced infection and recapitulated the LeishEXO-mediated phenotype. This research describes LeishEXO's utilization of the ANXA1/FPR axis to facilitate parasitic internalization and pathogenesis, which may be leveraged in the development of therapeutics for leishmaniasis.
Assuntos
Anexina A1 , Exossomos , Leishmania major , Leishmaniose Cutânea , Camundongos Knockout , Receptores de Formil Peptídeo , Anexina A1/metabolismo , Anexina A1/genética , Animais , Exossomos/metabolismo , Exossomos/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/metabolismo , Camundongos , Receptores de Formil Peptídeo/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Pele/parasitologia , Pele/imunologia , Pele/patologia , Pele/metabolismo , Células Th1/imunologia , FemininoRESUMO
Malaria is a serious vector-borne disease characterized by periodic episodes of high fever and strong immune responses that are coordinated with the daily synchronized parasite replication cycle inside RBCs. As immune cells harbor an autonomous circadian clock that controls various aspects of the immune response, we sought to determine whether the intensity of the immune response to Plasmodium spp., the parasite causing malaria, depends on time of infection. To do this, we developed a culture model in which mouse bone marrow-derived macrophages are stimulated with RBCs infected with Plasmodium berghei ANKA (iRBCs). Lysed iRBCs, but not intact iRBCs or uninfected RBCs, triggered an inflammatory immune response in bone marrow-derived macrophages. By stimulating at four different circadian time points (16, 22, 28, or 34 h postsynchronization of the cells' clock), 24-h rhythms in reactive oxygen species and cytokines/chemokines were found. Furthermore, the analysis of the macrophage proteome and phosphoproteome revealed global changes in response to iRBCs that varied according to circadian time. This included many proteins and signaling pathways known to be involved in the response to Plasmodium infection. In summary, our findings show that the circadian clock within macrophages determines the magnitude of the inflammatory response upon stimulation with ruptured iRBCs, along with changes of the cell proteome and phosphoproteome.
Assuntos
Ritmo Circadiano , Eritrócitos , Macrófagos , Malária , Plasmodium berghei , Animais , Macrófagos/imunologia , Macrófagos/parasitologia , Macrófagos/metabolismo , Camundongos , Eritrócitos/parasitologia , Eritrócitos/imunologia , Malária/imunologia , Malária/parasitologia , Plasmodium berghei/imunologia , Ritmo Circadiano/imunologia , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo , Relógios Circadianos/imunologia , Células Cultivadas , Proteoma/metabolismoRESUMO
There is scarce information concerning the role of sporadic clones in the dissemination of antimicrobial resistance genes (ARGs) within the nosocomial niche. We confirmed that the clinical Escherichia coli M19736 ST615 strain, one of the first isolates of Latin America that harbors a plasmid with an mcr-1 gene, could receive crucial ARG by transformation and conjugation using as donors critical plasmids that harbor bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, or aadB genes. Escherichia coli M19736 acquired bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, and aadB genes, being only blaNDM-1 maintained at 100% on the 10th day of subculture. In addition, when the evolved MDR-E. coli M19736 acquired sequentially bla CTX-M-15 and bla NDM-1 genes, the maintenance pattern of the plasmids changed. In addition, when the evolved XDR-E. coli M19736 acquired in an ulterior step the paadB plasmid, a different pattern of the plasmid's maintenance was found. Interestingly, the evolved E. coli M19736 strains disseminated simultaneously the acquired conjugative plasmids in different combinations though selection was ceftazidime in all cases. Finally, we isolated and characterized the extracellular vesicles (EVs) from the native and evolved XDR-E. coli M19736 strains. Interestingly, EVs from the evolved XDR-E. coli M19736 harbored bla CTX-M-15 though the pDCAG1-CTX-M-15 was previously lost as shown by WGS and experiments, suggesting that EV could be a relevant reservoir of ARG for susceptible bacteria. These results evidenced the genetic plasticity of a sporadic clone of E. coli such as ST615 that could play a relevant transitional link in the clinical dynamics and evolution to multidrug/extensively/pandrug-resistant phenotypes of superbugs within the nosocomial niche by acting simultaneously as a vector and reservoir of multiple ARGs which later could be disseminated.
Assuntos
Antibacterianos , Infecções por Escherichia coli , Escherichia coli , Transferência Genética Horizontal , Plasmídeos , beta-Lactamases , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Plasmídeos/genética , Humanos , Infecções por Escherichia coli/microbiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Conjugação Genética , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , América Latina , Farmacorresistência Bacteriana/genéticaRESUMO
Leishmania spp. parasites use macrophages as a host cell during infection. As a result, macrophages have a dual role: clearing the parasite as well as acting as host cells. Recently, studies have shown that macrophages harbour circadian clocks, which affect many of their functions such as phagocytosis, receptor expression and cytokine release. Interestingly, Leishmania major infection in hosts was also shown to be under circadian control. Therefore, we decided to investigate what underlies the rhythms of L. major infection within macrophages. Using a culture model of infection of bone marrow-derived macrophages with L. major promastigotes, we show that the parasites are internalised into macrophages with a 24-h variation dependent on a functional circadian clock in the cells. This was associated with a variation in the number of parasites per macrophage. The cell surface expression of parasite receptors was not controlled by the cells' circadian clock. In contrast, the expression of the components of the endocytic pathway, EEA1 and LC3b, varied according to the time of infection. This was paralleled by variations in parasite-induced ROS production as well as cytokine tumour necrosis factor α. In summary, we have uncovered a time-dependent regulation of the internalisation of L. major promastigotes in macrophages, controlled by the circadian clock in these cells, as well as subsequent cellular events in the endocytic pathway, intracellular signalling and cytokine production.
Assuntos
Leishmania major , Macrófagos , Animais , Macrófagos/parasitologia , Macrófagos/imunologia , Leishmania major/imunologia , Leishmania major/fisiologia , Camundongos , Ritmo Circadiano , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Relógios Circadianos , Células Cultivadas , Fator de Necrose Tumoral alfa/metabolismo , Endocitose , Interações Hospedeiro-ParasitaRESUMO
The protozoan parasites Plasmodium falciparum, Leishmania spp. and Trypanosoma cruzi continue to exert a significant toll on the disease landscape of the human population in sub-Saharan Africa and Latin America. Control measures have helped reduce the burden of their respective diseases-malaria, leishmaniasis and Chagas disease-in endemic regions. However, the need for new drugs, innovative vaccination strategies and molecular markers of disease severity and outcomes has emerged because of developing antimicrobial drug resistance, comparatively inadequate or absent vaccines, and a lack of trustworthy markers of morbid outcomes. Extracellular vesicles (EVs) have been widely reported to play a role in the biology and pathogenicity of P. falciparum, Leishmania spp. and T. cruzi ever since they were discovered. EVs are secreted by a yet to be fully understood mechanism in protozoans into the extracellular milieu and carry a cargo of diverse molecules that reflect the originator cell's metabolic state. Although our understanding of the biogenesis and function of EVs continues to deepen, the question of how EVs in P. falciparum, Leishmania spp. and T. cruzi can serve as targets for a translational agenda into clinical and public health interventions is yet to be fully explored. Here, as a consortium of protozoan researchers, we outline a plan for future researchers and pose three questions to direct an EV's translational agenda in P. falciparum, Leishmania spp. and T. cruzi. We opine that in the long term, executing this blueprint will help bridge the current unmet needs of these medically important protozoan diseases in sub-Saharan Africa and Latin America.
Assuntos
Doença de Chagas , Vesículas Extracelulares , Leishmania , Parasitos , Trypanosoma cruzi , Animais , Humanos , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologiaRESUMO
Malaria is a disease caused by infection with parasite Plasmodium spp. We studied the circadian regulation of host responses to the parasite, in a mouse model of cerebral malaria. The course of the disease was markedly affected by time of infection, with decreased parasitemia and increased inflammation upon infection in the middle of the night. At this time, there were fewer reticulocytes, which are target cells of the parasites. We next investigated the effects of desynchronization of host clocks on the infection: after 10 weeks of recurrent jet lags, mice showed decreased parasite growth and lack of parasite load rhythmicity, paralleled by a loss of glucose rhythm. Accordingly, disrupting host metabolic rhythms impacted parasite load rhythmicity. In summary, our findings of a circadian modulation of malaria parasite growth and infection shed light on aspects of the disease relevant to human malaria and could contribute to new therapeutic or prophylactic measures.
RESUMO
Most organisms have developed circadian clocks to adapt to 24-hour cycles in the environment. These clocks have become crucial for modulating and synchronizing complex behavioral and biological processes. A number of parasites seem to have evolved to take advantage of their hosts' circadian rhythms to favor their own infection and survival. Some species, such as Microphallus sp. and Trypanosoma cruzi, can alter the patterns of locomotor behavior of infected intermediate hosts, which can promote transmission to a subsequent primary host. Some fungi of the genera Ophiocordyceps and Entomophthora, as well as hairworms (Nematomorpha), elicit complex behaviors that promote their host's death at a time and place that optimizes continuation of the parasite's life-cycle. At least in some cases, a proposed mechanism might involve a change in the expression of clock-controlled genes. Lastly, some disease-causing protozoan parasites of the genera Trypanosoma, Plasmodium, and Leishmania induce changes in the circadian rhythms of their primary hosts upon infection. Some of these changes may be attributed to circadian alterations resulting from the host's inflammatory response to the infection or other unexplored responses or adaptations to the illness. Thus, a distinction must be made between manipulation of the parasite and response of the host when studying these alterations in the future. Parasitic manipulation of circadian rhythms, which vastly modulates behavior and physiology, is an essential issue that has been relatively understudied. A deeper understanding of this phenomenon could lead to the development of novel therapeutic approaches for the diseases that these parasites convey.
RESUMO
Introduction: Extracellular vesicles (EVs) are heterogenous cell-derived membrane-bound structures which can be subdivided into three distinct classes according to distinct morphological characteristics, cellular origins, and functions. Small EVs, or exosomes, can be produced by the protozoan parasite Leishmania through the evolutionarily conserved ESCRT pathway, and act as effectors of virulence and drivers of pathogenesis within mammalian hosts. Techniques for the identification of EVs of non-mammalian origin, however, remain inaccurate in comparison to their well-characterized mammalian counterparts. Thus, we still lack reliable and specific markers for Leishmania-derived exosomes, which poses a significant challenge to the field. Methods: Herein, we utilized serial differential ultracentrifugation to separate Leishmania-derived EV populations into three distinct fractions. Nanoparticle tracking analysis and transmission electron microscopy were used to validate their morphological characteristics, and bioinformatic analysis of LC-MS/MS proteomics corroborated cellular origins and function. Discussion: Proteomic data indicated potential novel proteic markers of Leishmania-derived exosomes, including proteins involved in endosomal machinery and the ESCRT pathway, as well as the parasitic phosphatase PRL-1. Further investigation is required to determine the specificity and sensitivity of these markers.
Assuntos
Exossomos , Leishmania , Animais , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Complexos Endossomais de Distribuição Requeridos para Transporte , MamíferosRESUMO
Introduction: Ebola virus (EBOV) is an RNA virus of the Filoviridae family that is responsible for outbreaks of hemorrhagic fevers in primates with a lethality rate as high as 90%. EBOV primarily targets host macrophages leading to cell activation and systemic cytokine storm, and fatal infection is associated with an inhibited interferon response, and lymphopenia. The EBOV surface glycoprotein (GP) has been shown to directly induce T cell depletion and can be secreted outside the virion via extracellular vesicles (EVs), though most studies are limited to epithelial cells and underlying mechanisms remain poorly elucidated. Methods: To assess the role of GP on EBOV-induced dysregulation of host immunity, we first utilized EBOV virus-like particles (VLPs) expressing VP40 and NP either alone (Bald-VLP) or in conjunction with GP (VLP-GP) to investigate early inflammatory responses in THP-1 macrophages and in a murine model. We then sought to decipher the role of non-classical inflammatory mediators such as EVs over the course of EBOV infection in two EBOV-infected rhesus macaques by isolating and characterizing circulatory EVs throughout disease progression using size exclusion chromatography, nanoparticle tracking-analysis, and LC-MS/MS. Results: While all VLPs could induce inflammatory mediators and recruit small peritoneal macrophages, pro-inflammatory cytokine and chemokine gene expression was exacerbated by the presence of GP. Further, quantification of EVs isolated from infected rhesus macaques revealed that the concentration of vesicles peaked in circulation at the terminal stage, at which time EBOV GP could be detected in host-derived exosomes. Moreover, comparative proteomics conducted across EV populations isolated from serum at various time points before and after infection revealed differences in host-derived protein content that were most significantly pronounced at the endpoint of infection, including significant expression of mediators of TLR4 signaling. Discussion: These results suggest a dynamic role for EVs in the modification of disease states in the context of EBOV. Overall, our work highlights the importance of viral factors, such as the GP, and host derived EVs in the inflammatory cascade and pathogenesis of EBOV, which can be collectively further exploited for novel antiviral development.
Assuntos
Ebolavirus , Vesículas Extracelulares , Doença pelo Vírus Ebola , Animais , Camundongos , Doença pelo Vírus Ebola/metabolismo , Macaca mulatta , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ebolavirus/fisiologia , Quimiocinas/metabolismo , Vesículas Extracelulares/metabolismoRESUMO
Recent publications have explored intranasal (i.n.) adenovirus-based (Ad) vaccines as an effective strategy for SARS-CoV-2 in pre-clinical models. However, the effects of prior immunizations and infections have yet to be considered. Here, we investigate the immunomodulatory effects of Mycobacterium bovis BCG pre-immunization followed by vaccination with an S-protein-expressing i.n. Ad, termed Ad(Spike). While i.n. Ad(Spike) retains some protective effect after 6 months, a single administration of BCG-Danish prior to Ad(Spike) potentiates its ability to control viral replication of the B.1.351 SARS-CoV-2 variant within the respiratory tract. Though BCG-Danish did not affect Ad(Spike)-generated humoral immunity, it promoted the generation of cytotoxic/Th1 responses over suppressive FoxP3+ TREG cells in the lungs of infected mice. Thus, this vaccination strategy may prove useful in limiting future pandemics by potentiating the long-term efficacy of mucosal vaccines within the context of the widely distributed BCG vaccine.
RESUMO
Assessment of structure-activity relationships for anti-protozoan activity revealed a strategy for preparing potent anisomycin derivatives with reduced host toxicity. Thirteen anisomycin analogs were synthesized by modifying the alcohol, amine, and aromatic functional groups. Examination of anti-protozoal activity against various strains of Leishmania and cytotoxicity against leucocytes with comparison against the parent natural product demonstrated typical losses of activity with modifications of the alcohol, amine, and aromatic meta-positions. On the other hand, the para-phenol moiety of anisomycin proved an effective location for introducing substituents without significant loss of anti-protozoan potency. An entry point for differentiating activity against Leishmania versus host has been uncovered by this systematic study.
RESUMO
Introduction: Most studies using murine disease models are conducted at housing temperatures (20 - 22°C) that are sub-optimal (ST) for mice, eliciting changes in metabolism and response to disease. Experiments performed at a thermoneutral temperature (TT; 28 - 31°C) have revealed an altered immune response to pathogens and experimental treatments in murine disease model that have implications for their translation to clinical research. How such conditions affect the inflammatory response to infection with Plasmodium berghei ANKA (PbA) and disease progression is unknown. We hypothesized that changes in environmental temperature modulate immune cells and modify host response to malaria disease. To test this hypothesis, we conducted experiments to determine: (1) the inflammatory response to malarial agents injection in a peritonitis model and (2) disease progression in PbA-infected mice at TT compared to ST. Methods: In one study, acclimatized mice were injected intraperitoneally with native hemozoin (nHZ) or Leishmania at TT (28 - 31°C) or ST, and immune cells, cytokine, and extracellular vesicle (EV) profiles were determined from the peritoneal cavity (PEC) fluid. In another study, PbA-infected mice were monitored until end-point (i.e. experimental malaria score ≥4). Results: We found that Leishmania injection resulted in decreased cell recruitment and higher phagocytosis of nHZ in mice housed at TT. We found 398 upregulated and 293 downregulated proinflammatory genes in mice injected with nHZ, at both temperatures. We report the presence of host-derived EVs never reported before in a murine parasitic murine model at both temperatures. We observed metabolic changes in mice housed at TT, but these did not result to noticeable changes in disease progression compared to ST. Discussion: To our knowledge, these experiments are the first to investigate the effect of thermoneutrality on a malaria murine model. We found important metabolic difference in mice housed at TT. Our results offer insights on how thermoneutrality might impact a severe malaria murine model and directions for more targeted investigations.
Assuntos
Malária , Animais , Camundongos , Temperatura , Modelos Animais de Doenças , Citocinas/genética , Progressão da DoençaRESUMO
Interleukin (IL)-18, a member of the IL-1 family of alarmins, is abundantly released in the lungs following influenza A (IAV) infections yet its role in orchestrating the local adaptive immune response remains ill defined. Through genetic disruption of the IL-18 receptor, we demonstrate that IL-18 not only promotes pulmonary TH1 responses but also influences regulatory T cells (TREG) function in the infected lungs. As the response unfolds, TREG cells accumulating in the lungs express Helios, T-bet, CXCR3, and IL-18R1 and produce interferon γ in the presence of IL-12. During IAV, IL-18R1 is required for TREG cells to control TH17, but not TH1, responses and promote a return to lung homeostasis, revealing a novel mechanism of selective suppression. Moreover, this observation was not limited to the lungs, as skin-localized TREG cells require an IL-18 signal to specifically suppress IL-17A production by TH17 and γδ T cells in a model of chronic cutaneous Leishmania major infection. Overall, these results uncover how IL-18 orchestrates the tissue adaptation of TREG cells to selectively favor TH1 over TH17 responses during TH1-driven immune responses and provide a novel perspective into how IL-18 dictates the immune response during viral and parasitic infections.
Assuntos
Interleucina-18 , Infecção Persistente , Humanos , Linfócitos T Reguladores , Interferon gama , Interleucina-12 , Células Th17 , Células Th1RESUMO
Here, we focus on Leishmania extracellular vesicles (EVs) and their DNA content, detailing a protocol for the isolation of these nanoparticles and their subsequent genomic characterization. We describe a robust and comprehensive approach for obtaining, storing, and analyzing EVs derived from cultured parasites. We detail a user-friendly bioinformatics pipeline for sequence analysis and visualization of CNV analysis and ploidy changes. For complete details on the use and execution of this protocol, please refer to Douanne et al. (2022).1.
RESUMO
Innate immune cells can potentiate the response to reinfection through an innate form of immunological memory known as trained immunity. The potential of this fast-acting, nonspecific memory compared to traditional adaptive immunological memory in prophylaxis and therapy has been a topic of great interest in many fields, including infectious diseases. Amidst the rise of antimicrobial resistance and climate change-two major threats to global health-, harnessing the advantages of trained immunity compared to traditional forms of prophylaxis and therapy could be game-changing. Here, we present recent works bridging trained immunity and infectious disease that raise important discoveries, questions, concerns, and novel avenues for the modulation of trained immunity in practice. By exploring the progress in bacterial, viral, fungal, and parasitic diseases, we equally highlight future directions with a focus on particularly problematic and/or understudied pathogens.
Assuntos
Doenças Transmissíveis , Imunidade Inata , Humanos , Imunidade Treinada , Doenças Transmissíveis/terapiaRESUMO
The survival, growth, and virulence of Leishmania spp., a group of protozoan parasites, depends on the proper access and regulation of iron. Macrophages, Leishmania's host cell, may divert iron traffic by reducing uptake or by increasing the efflux of iron via the exporter ferroportin. This parasite has adapted by inhibiting the synthesis and inducing the degradation of ferroportin. To study the role of iron in leishmaniasis, we employed Hjv-/- mice, a model of hemochromatosis. The disruption of hemojuvelin (Hjv) abrogates the expression of the iron hormone hepcidin. This allows unrestricted iron entry into the plasma from ferroportin-expressing intestinal epithelial cells and tissue macrophages, resulting in systemic iron overload. Mice were injected with Leishmania major in hind footpads or intraperitoneally. Compared with wild-type controls, Hjv-/- mice displayed transient delayed growth of L. major in hind footpads, with a significant difference in parasite burden 4 weeks post-infection. Following acute intraperitoneal exposure to L. major, Hjv-/- peritoneal cells manifested increased expression of inflammatory cytokines and chemokines (Il1b, Tnfa, Cxcl2, and Ccl2). In response to infection with L. infantum, the causative agent of visceral leishmaniasis, Hjv-/- and control mice developed similar liver and splenic parasite burden despite vastly different tissue iron content and ferroportin expression. Thus, genetic iron overload due to hemojuvelin deficiency appears to mitigate the early development of only cutaneous leishmaniasis.
Assuntos
Hemocromatose , Leishmaniose Cutânea , Animais , Camundongos , Proteínas Ligadas por GPI/metabolismo , Hemocromatose/genética , Hemocromatose/metabolismo , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/metabolismo , Fígado/metabolismoRESUMO
Extracellular vesicles (EVs) recently emerged as important players in the pathophysiology of parasitic infections. While the protist parasite Giardia duodenalis can produce EVs, their role in giardiasis remains obscure. Giardia can disrupt gut microbiota biofilms and transform commensal bacteria into invasive pathobionts at sites devoid of colonizing trophozoites via unknown mechanisms. We hypothesized that Giardia EVs could modify gut bacterial behaviour via a novel mode of trans-kingdom communication. Our findings indicate that Giardia EVs exert bacteriostatic effects on Escherichia coli HB101 and Enterobacter cloacae TW1, increasing their swimming motility. Giardia EVs also decreased the biofilm-forming ability of E. coli HB101 but not by E. cloacae TW1, supporting the hypothesis that these effects are, at least in part, bacteria-selective. E. coli HB101 and E. cloacae TW1 exhibited increased adhesion/invasion onto small intestine epithelial cells when exposed to Giardia EVs. EVs labelled with PKH67 revealed colocalization with E. coli HB101 and E. cloacae TW1 bacterial cells. Small RNA sequencing revealed a high abundance of ribosomal RNA (rRNA)- and transfer RNA (tRNA)-derived small RNAs, short-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) within Giardia EVs. Proteomic analysis of EVs uncovered the presence of RNA chaperones and heat shock proteins that can facilitate the thermal stability of EVs and its sRNA cargo, as well as protein-modifying enzymes. In vitro, RNase heat-treatment assays showed that total RNAs in EVs, but not proteins, are responsible for modulating bacterial swimming motility and biofilm formation. G. duodenalis small RNAs of EVs, but not proteins, were responsible for the increased bacterial adhesion to intestinal epithelial cells induced upon exposure to Giardia EVs. Together, the findings indicate that Giardia EVs contain a heat-stable, RNase-sensitive cargo that can trigger the development of pathobiont characteristics in Enterobacteria, depicting a novel trans-kingdom cross-talk in the gut.
RESUMO
Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.