Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(20): eabm9303, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35584214

RESUMO

Plasmonic catalysis holds promise for opening new reaction pathways inaccessible thermally or for improving the efficiency of chemical processes. We report a gold stripe waveguide along which infrared (λ0 ~ 1350 nanometers) surface plasmon polaritons (SPPs) propagate, operating simultaneously as an electrochemical working electrode. Cyclic voltammograms obtained under SPP excitation enable oxidative processes involving energetic holes to be investigated separately from reductive processes involving energetic electrons. Under SPP excitation, redox currents increase by 10×, redox potentials decrease by ~2× and split in correlation with photon energy, and the charge transfer resistance drops by ~2× as measured using electrochemical impedance spectroscopy. The temperature of the working electrode was monitored in situ, ruling out thermal effects. Chronoamperometry measurements with SPPs modulated at 600 hertz yield a commensurately modulated current response, ruling out thermally enhanced mass transport. Our observations indicate opening of optically controlled nonequilibrium redox channels associated with energetic carrier transfer to the redox species.

2.
Opt Lett ; 46(18): 4482-4485, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525027

RESUMO

We use the end-facet of a solid-core polarization-maintaining photonic crystal fiber (PM-PCF) as a platform on which to fabricate resonant plasmonic nanostructures. Solid-core PM-PCFs can be excited in a polarization-aligned single mode by supercontinuum light, so they are well-suited to the wavelength-interrogation of resonant plasmonic nanostructures, especially supporting complex spectra over a broad spectral range. The nanostructures implemented consist of an array of heptamer-arranged nanoholes formed in a thin Au film. The nanoholes were milled with a He+ focused ion beam, with the array polarization-aligned in situ to cover the solid core of the PM-PCF. Transmittance spectra, measured using a supercontinuum source coupled to the input of the PM-PCF, reveal a rich set of Fano resonances associated with localized and propagating surface plasmons. The measured spectra are compared to computations in order to identify the resonant modes. The spectra redshift as the medium covering the nanoholes changes from air to oil, anticipating application to sensing.

3.
Appl Opt ; 58(11): 2994-3002, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31044904

RESUMO

Long-range surface plasmon polariton waveguides consisting of Au stripes integrated with input and output grating couplers embedded in thick Cytop claddings are proposed and demonstrated experimentally. Under the right conditions, grating couplers enable broadside (top) coupling with good efficiency while producing a low level of background light. The scheme does not require high-quality input and output edge facets, and it simplifies optical alignments. We demonstrate coupling using a cleaved bow-tie fiber and a lensed fiber, and we determine the grating coupling efficiencies in both cases over a broad operating wavelength range. The lensed fiber produces a better overlap with the long-range surface plasmon mode of interest and thus results in a better coupling efficiency with essentially no background light as observed on an infrared camera. The measurements are compared with theoretical results obtained using a realistic model of the structures, including out-of-plane curvature in the grating profile resulting from our fabrication process. The coupling scheme along with the surface plasmon waveguides hold strong potential for biosensing applications.

4.
Opt Express ; 24(20): 22544-22554, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27828325

RESUMO

In this paper we present a sub-bandgap photodetector consisting of a metal grating on a thin metal patch on silicon, which makes use of the enhancement produced by the excitation of surface plasmon polaritons at the metal-silicon interface. The grating is defined via e-beam lithography and Au lift-off on a Au patch defined beforehand by optical lithography on doped p-type silicon. The surface plasmon polaritons are absorbed by the metal, leading to the creation of hot holes that can cross into the silicon where they are collected as the photocurrent. Physical characterization of intermediate structure is provided along with responsivity measurements at telecom wavelengths. Results are promising in terms of responsivity, with a value of 13 mA/W measured at 1550 nm - this is among the highest values reported to date for sub-bandgap detectors based on internal photoemission. The Schottky photodetector can be used in, e.g., non-contact wafer probing or in short-reach optical communications applications.

5.
Nano Lett ; 15(4): 2304-11, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25730698

RESUMO

We propose a plasmonic surface that produces an electrically controlled reflectance as a high-speed intensity modulator. The device is conceived as a metal-oxide-semiconductor capacitor on silicon with its metal structured as a thin patch bearing a contiguous nanoscale grating. The metal structure serves multiple functions as a driving electrode and as a grating coupler for perpendicularly incident p-polarized light to surface plasmons supported by the patch. Modulation is produced by charging and discharging the capacitor and exploiting the carrier refraction effect in silicon along with the high sensitivity of strongly confined surface plasmons to index perturbations. The area of the modulator is set by the area of the incident beam, leading to a very compact device for a strongly focused beam (∼2.5 µm in diameter). Theoretically, the modulator can operate over a broad electrical bandwidth (tens of gigahertz) with a modulation depth of 3 to 6%, a loss of 3 to 4 dB, and an optical bandwidth of about 50 nm. About 1000 modulators can be integrated over a 50 mm(2) area producing an aggregate electro-optic modulation rate in excess of 1 Tb/s. We demonstrate experimentally modulators operating at telecommunications wavelengths, fabricated as nanostructured Au/HfO2/p-Si capacitors. The modulators break conceptually from waveguide-based devices and belong to the same class of devices as surface photodetectors and vertical cavity surface-emitting lasers.

6.
Nanotechnology ; 25(49): 495202, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25414162

RESUMO

The fabrication of a novel plasmonic reflection modulator is presented and described. The modulator includes plasmon excitation using a diffraction grating coupler and is based on a metal-insulator-semiconductor structure on silicon. Fabrication includes a thin thermal oxide, a plasmonic metal surface defined by optical lithography, a metal grating coupler defined by overlaid e-beam lithography, a passivation layer with metalized vias, and electrical contacts. Physical characterization of intermediate structures is provided along with modulation measurements at λ0 ∼ 1550 nm which verify the concept.

7.
Nanotechnology ; 23(44): 444011, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23080540

RESUMO

Surface plasmon sub-bandgap Schottky detectors based on an asymmetric Au stripe waveguide on p-Si are investigated theoretically and experimentally at free-space wavelengths of λ(0) = 1310 and 1550 nm. Au on p-Si produces a low Schottky barrier (0.33 eV), which improves the internal quantum efficiency. Thick and thin Au stripes are compared, with the latter increasing the hot hole emission probability relative to the former, and thus also improving the internal quantum efficiency. Two excitation schemes are considered: end facet illumination which launches surface plasmons on the detector, and top illumination which does not. Both schemes are implemented using a piezoelectric positioner that is programmed to scan the detection area in steps of 100-200 nm, thus enabling the acquisition of high-resolution photocurrent maps. The surface plasmon detectors yield a responsivity of ~1 mA W(-1), ~2× larger than the same detectors under top illumination, due to the absorption of surface plasmons. We compare the measurements with theoretical results for both excitation schemes and estimate the hot hole attenuation length in our Au stripes to be ~23 nm.

8.
BMC Cardiovasc Disord ; 3: 3, 2003 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-12769833

RESUMO

BACKGROUND: The administration of antiplatelet drugs before coronary artery bypass graft surgery (CABG) is associated with an increased risk of major hemorrhage and related surgical reexploration. Little is known about the relative effect of combined clopidogrel and aspirin on blood product use around the time of CABG. We evaluated the associated risk between the combined use of aspirin and clopidogrel and the transfusion of blood products perioperatively. METHODS: We retrospectively studied a cohort of 659 individuals who underwent a first CABG, without concomitant valvular or aortic surgery, at a single large Canadian cardiac surgical centre between January 2000 and April 2002. The four study exposure groups were those prescribed aspirin (n = 105), clopidogrel (n = 11), the combination of both (n = 46), or neither drug (n = 497), within 7 days prior to CABG. The primary study outcome was the excessive transfusion of blood products during CABG and up to the second post-operative day, defined as > or = 2 units of packed red blood cells (PRBC), > or = 2 units of fresh frozen plasma, > or = 5 units of cryoprecipitate or > or = 5 units of platelets. Secondary outcomes included the mean number of transfused units of each type of blood product. RESULTS: A greater mean number of units of PRBC were transfused among those who received clopidogrel alone (2.9) or in combination with aspirin (2.4), compared to those on aspirin alone (1.9) or neither antiplatelet drug (1.4) (P = 0.001). A similar trend was seen for the respective mean number of transfused units of platelets (3.6, 3.7, 1.3 and 1.0; P < 0.001) and fresh frozen plasma (2.5, 3.1, 2.3, 1.6; P = 0.01). Compared to non-users, the associated risk of excessive blood product transfusion was highest among recipients of aspirin and clopidogrel together (adjusted OR 2.2, 95% CI 1.1-4.3). No significant association was seen among lone users of aspirin (adjusted OR 1.0, 95% CI 0.6-1.6) or clopidogrel (adjusted OR 0.7, 95% CI 0.2-2.5), compared to non-users. CONCLUSIONS: While combined use of aspirin and clopidogrel shortly before CABG surgery may increase the associated risk of excess transfusion of blood products perioperatively, several study limitations prevent any confident conclusions from being drawn. Beyond challenging these findings, future research might focus on the value of both intraoperative monitoring of platelet function, and the effectiveness of antifibrinolytic agents, at reducing the risk of postoperative bleeding.


Assuntos
Aspirina/administração & dosagem , Ponte de Artéria Coronária , Transfusão de Eritrócitos/estatística & dados numéricos , Inibidores da Agregação Plaquetária/administração & dosagem , Transfusão de Plaquetas/estatística & dados numéricos , Ticlopidina/análogos & derivados , Ticlopidina/administração & dosagem , Idoso , Clopidogrel , Estudos de Coortes , Quimioterapia Combinada , Feminino , Hematócrito , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA