Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666976

RESUMO

The development of new and effective antimicrobial compounds is urgent due to the emergence of resistant bacteria. Natural plant flavonoids are known to be effective molecules, but their activity and selectivity have to be increased. Based on previous aurone potency, we designed new aurone derivatives bearing acetamido and amino groups at the position 5 of the A ring and managing various monosubstitutions at the B ring. A series of 31 new aurone derivatives were first evaluated for their antimicrobial activity with five derivatives being the most active (compounds 10, 12, 15, 16, and 20). The evaluation of their cytotoxicity on human cells and of their therapeutic index (TI) showed that compounds 10 and 20 had the highest TI. Finally, screening against a large panel of pathogens confirmed that compounds 10 and 20 possess large spectrum antimicrobial activity, including on bioweapon BSL3 strains, with MIC values as low as 0.78 µM. These results demonstrate that 5-acetamidoaurones are far more active and safer compared with 5-aminoaurones, and that benzyloxy and isopropyl substitutions at the B ring are the most promising strategy in the exploration of new antimicrobial aurones.

2.
J Biomed Sci ; 31(1): 18, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287360

RESUMO

BACKGROUND: Mycobacterium abscessus, a fast-growing non-tuberculous mycobacterium, is an emerging opportunistic pathogen responsible for chronic bronchopulmonary infections in people with respiratory diseases such as cystic fibrosis (CF). Due to its intrinsic polyresistance to a wide range of antibiotics, most treatments for M. abscessus pulmonary infections are poorly effective. In this context, antimicrobial peptides (AMPs) active against bacterial strains and less prompt to cause resistance, represent a good alternative to conventional antibiotics. Herein, we evaluated the effect of three arenicin isoforms, possessing two or four Cysteines involved in one (Ar-1, Ar-2) or two disulfide bonds (Ar-3), on the in vitro growth of M. abscessus. METHODS: The respective disulfide-free AMPs, were built by replacing the Cysteines with alpha-amino-n-butyric acid (Abu) residue. We evaluated the efficiency of the eight arenicin derivatives through their antimicrobial activity against M. abscessus strains, their cytotoxicity towards human cell lines, and their hemolytic activity on human erythrocytes. The mechanism of action of the Ar-1 peptide was further investigated through membrane permeabilization assay, electron microscopy, lipid insertion assay via surface pressure measurement, and the induction of resistance assay. RESULTS: Our results demonstrated that Ar-1 was the safest peptide with no toxicity towards human cells and no hemolytic activity, and the most active against M. abscessus growth. Ar-1 acts by insertion into mycobacterial lipids, resulting in a rapid membranolytic effect that kills M. abscessus without induction of resistance. CONCLUSION: Overall, the present study emphasized Ar-1 as a potential new alternative to conventional antibiotics in the treatment of CF-associated bacterial infection related to M. abscessus.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Poliestirenos , Humanos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Antibacterianos/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
3.
Mol Metab ; 76: 101772, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442376

RESUMO

OBJECTIVES: Readily accessible human pancreatic beta cells that are functionally close to primary adult beta cells are a crucial model to better understand human beta cell physiology and develop new treatments for diabetes. We here report the characterization of EndoC-ßH5 cells, the latest in the EndoC-ßH cell family. METHODS: EndoC-ßH5 cells were generated by integrative gene transfer of immortalizing transgenes hTERT and SV40 large T along with Herpes Simplex Virus-1 thymidine kinase into human fetal pancreas. Immortalizing transgenes were removed after amplification using CRE activation and remaining non-excized cells eliminated using ganciclovir. Resulting cells were distributed as ready to use EndoC-ßH5 cells. We performed transcriptome, immunological and extensive functional assays. RESULTS: Ready to use EndoC-ßH5 cells display highly efficient glucose dependent insulin secretion. A robust 10-fold insulin secretion index was observed and reproduced in four independent laboratories across Europe. EndoC-ßH5 cells secrete insulin in a dynamic manner in response to glucose and secretion is further potentiated by GIP and GLP-1 analogs. RNA-seq confirmed abundant expression of beta cell transcription factors and functional markers, including incretin receptors. Cytokines induce a gene expression signature of inflammatory pathways and antigen processing and presentation. Finally, modified HLA-A2 expressing EndoC-ßH5 cells elicit specific A2-alloreactive CD8 T cell activation. CONCLUSIONS: EndoC-ßH5 cells represent a unique storable and ready to use human pancreatic beta cell model with highly robust and reproducible features. Such cells are thus relevant for the study of beta cell function, screening and validation of new drugs, and development of disease models.


Assuntos
Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Secreção de Insulina , Linhagem Celular , Insulina/metabolismo , Fatores de Transcrição/metabolismo , Glucose/metabolismo
4.
Antibiotics (Basel) ; 12(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36671321

RESUMO

Cystic fibrosis (CF) is associated with repeated lung bacterial infection, mainly by Pseudomonas aeruginosa, Staphylococcus aureus, and Mycobacterium abscessus, all known to be or becoming resistant to several antibiotics, often leading to therapeutic failure and death. In this context, antimicrobial peptides and antimicrobial polymers active against resistant strains and less prompt to cause resistance, appear as a good alternative to conventional antibiotics. In the present study, methacrylate-based copolymers obtained by radical chemistry were evaluated against CF-associated bacterial strains. Results showed that the type (Random versus Diblock) and the size of the copolymers affected their antibacterial activity and toxicity. Among the different copolymers tested, four (i.e., Random10200, Random15000, Random23900, and Diblock9500) were identified as the most active and the safest molecules and were further investigated. Data showed that they inserted into bacterial lipids, leading to a rapid membranolytic effect and killing of the bacterial. In relation with their fast bactericidal action and conversely to conventional antibiotics, those copolymers did not induce a resistance and remained active against antibiotic-resistant strains. Finally, the selected copolymers possessed a preventive effect on biofilm formation, although not exhibiting disruptive activity. Overall, the present study demonstrates that methacrylate-based copolymers are an interesting alternative to conventional antibiotics in the treatment of CF-associated bacterial infection.

5.
Eur J Med Chem ; 246: 114972, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36462443

RESUMO

Human tyrosinase (hsTYR) catalyzes the key steps of melanogenesis, making it a privileged target for reducing melanin production in vivo. However, very few hsTYR inhibitors have been reported so far in the literature, whereas thousands of mushroom tyrosinase (abTYR) inhibitors are known. Yet, as these enzymes are actually very different, including at their active sites, there is an urgent need for new true hsTYR inhibitors in order to enable human-directed pharmacological and dermocosmetic applications without encountering the inefficiency and toxicity issues currently triggered by kojic acid or hydroquinone. Starting from the two most active compounds reported to date, i.e. a 2-hydroxypyridine-embedded aurone and thiamidol, we combined herein key structural elements and developed new nanomolar hsTYR inhibitors with cell-based activity. From a complete series of thirty-eight synthesized derivatives, excellent inhibition values were obtained for two compounds in both human melanoma cell lysates and purified hsTYR assays, and a promising improvement was observed in whole cell experiments.


Assuntos
Melanoma , Monofenol Mono-Oxigenase , Humanos , Melanoma/tratamento farmacológico , Melaninas , Simulação de Acoplamento Molecular , Resorcinóis/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
6.
NPJ Biofilms Microbiomes ; 8(1): 70, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038584

RESUMO

Microbiomes are rife for biotechnological exploitation, particularly the rumen microbiome, due to their complexicity and diversity. In this study, antimicrobial peptides (AMPs) from the rumen microbiome (Lynronne 1, 2, 3 and P15s) were assessed for their therapeutic potential against seven clinical strains of Pseudomonas aeruginosa. All AMPs exhibited antimicrobial activity against all strains, with minimum inhibitory concentrations (MICs) ranging from 4-512 µg/mL. Time-kill kinetics of all AMPs at 3× MIC values against strains PAO1 and LES431 showed complete kill within 10 min to 4 h, although P15s was not bactericidal against PAO1. All AMPs significantly inhibited biofilm formation by strains PAO1 and LES431, and induction of resistance assays showed no decrease in activity against these strains. AMP cytotoxicity against human lung cells was also minimal. In terms of mechanism of action, the AMPs showed affinity towards PAO1 and LES431 bacterial membrane lipids, efficiently permeabilising the P. aeruginosa membrane. Transcriptome and metabolome analysis revealed increased catalytic activity at the cell membrane and promotion of ß-oxidation of fatty acids. Finally, tests performed with the Galleria mellonella infection model showed that Lynronne 1 and 2 were efficacious in vivo, with a 100% survival rate following treatment at 32 mg/kg and 128 mg/kg, respectively. This study illustrates the therapeutic potential of microbiome-derived AMPs against P. aeruginosa infections.


Assuntos
Microbiota , Infecções por Pseudomonas , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa
7.
NPJ Biofilms Microbiomes ; 8(1): 58, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835775

RESUMO

Here we report two antimicrobial peptides (AMPs), HG2 and HG4 identified from a rumen microbiome metagenomic dataset, with activity against multidrug-resistant (MDR) bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) strains, a major hospital and community-acquired pathogen. We employed the classifier model design to analyse, visualise, and interpret AMP activities. This approach allowed in silico discrimination of promising lead AMP candidates for experimental evaluation. The lead AMPs, HG2 and HG4, are fast-acting and show anti-biofilm and anti-inflammatory activities in vitro and demonstrated little toxicity to human primary cell lines. The peptides were effective in vivo within a Galleria mellonella model of MRSA USA300 infection. In terms of mechanism of action, HG2 and HG4 appear to interact with the cytoplasmic membrane of target cells and may inhibit other cellular processes, whilst preferentially binding to bacterial lipids over human cell lipids. Therefore, these AMPs may offer additional therapeutic templates for MDR bacterial infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Lipídeos/farmacologia , Lipídeos/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo
8.
Biomolecules ; 12(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35740895

RESUMO

As the technologies for peptide synthesis and development continue to mature, antimicrobial peptides (AMPs) are being widely studied as significant contributors in medicinal chemistry research. Furthermore, the advancement in the synthesis of dendrimers' design makes dendrimers wonderful nanostructures with distinguishing properties. This study foregrounds a temporin SHa analog, [G10a]-SHa, and its dendrimers as globular macromolecules possessing anticancer and antibacterial activities. These architectures of temporin SHa, named as [G10a]-SHa, its dendrimeric analogs [G10a]2-SHa and [G10a]3-SHa, and [G10a]2-SHa conjugated with a polymer molecule, i.e., Jeff-[G10a]2-SHa, were synthesized, purified on RP-HPLC and UPLC and fully characterized by mass, NMR spectroscopic techniques, circular dichroism, ultraviolet, infrared, dynamic light scattering, and atomic force microscopic studies. In pH- and temperature-dependent studies, all of the peptide dendrimers were found to be stable in the temperature range up to 40-60 °C and pH values in the range of 6-12. Biological-activity studies showed these peptide dendrimers possessed improved antibacterial activity against different strains of both Gram-positive and Gram-negative strains. Together, these dendrimers also possessed potent selective antiproliferative activity against human cancer cells originating from different organs (breast, lung, prostate, pancreas, and liver). The high hemolytic activity of [G10a]2-SHa and [G10a]3-SHa dendrimers, however, limits their use for topical treatment, such as in the case of skin infection. On the contrary, the antibacterial and anticancer activities of Jeff-[G10a]2-SHa, associated with its low hemolytic action, make it potentially suitable for systemic treatment.


Assuntos
Antibacterianos , Antineoplásicos , Dendrímeros , Neoplasias , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Dicroísmo Circular , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , Neoplasias/tratamento farmacológico
9.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806791

RESUMO

The world is on the verge of a major antibiotic crisis as the emergence of resistant bacteria is increasing, and very few novel molecules have been discovered since the 1960s. In this context, scientists have been exploring alternatives to conventional antibiotics, such as ribosomally synthesized and post-translationally modified peptides (RiPPs). Interestingly, the highly potent in vitro antibacterial activity and safety of ruminococcin C1, a recently discovered RiPP belonging to the sactipeptide subclass, has been demonstrated. The present results show that ruminococcin C1 is efficient at curing infection and at protecting challenged mice from Clostridium perfringens with a lower dose than the conventional antibiotic vancomycin. Moreover, antimicrobial peptide (AMP) is also effective against this pathogen in the complex microbial community of the gut environment, with a selective impact on a few bacterial genera, while maintaining a global homeostasis of the microbiome. In addition, ruminococcin C1 exhibits other biological activities that could be beneficial for human health, as well as other fields of applications. Overall, this study, by using an in vivo infection approach, confirms the antimicrobial clinical potential and highlights the multiple functional properties of ruminococcin C1, thus extending its therapeutic interest.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Peptídeos/farmacologia , Antibacterianos/química , Antifúngicos/farmacologia , Bacteriocinas/química , Biofilmes/efeitos dos fármacos , Clostridiales/metabolismo , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , Clostridium perfringens/efeitos dos fármacos , Humanos , Peptídeos/química , Processamento de Proteína Pós-Traducional
10.
Antioxidants (Basel) ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430440

RESUMO

The present study aims to investigate the properties of biopolymers extracted from a Lebanese onion non edible plant. The extraction was performed under mild conditions by varying the percentage of ultra-sound (US) treatment duration to a total extraction time of 30 min (0, 50, 100% US). The extracts were characterized using FTIR, SEC, GC-MS, TGA, and DSC analyses. The composition of the extracts was determined from the total carbohydrate content and protein content measurements. The thermal analyses indicate that all samples have high thermal stability. The antioxidant activities of the extracts were investigated, using ß-carotene bleaching, scavenging activity of ABTS, metal chelating ability, and total antioxidant activity tests. The results indicate that the 50% US treatment leads to the best antioxidant activity. Biocompatibility of the extracts was evaluated using hemolysis and cytotoxicity assays. The results showed that 0 and 50% US samples are not toxic to human cells, in contrary to 100% US.

11.
Biomolecules ; 10(12)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339257

RESUMO

Cervical cancer is among the leading causes of death in women. Chemotherapy options available for cervical cancer include highly cytotoxic drugs such as taxol, cisplatin, 5-florouracil, and doxorubicin, which are not specific. In the current study, we have identified a new peptide conjugate (Fur4-2-Nal3-Ala2-Phe1-CONH2) (conjugate 4), from screening of a small library of tripeptide-conjugates of furan, as highly potent anticancer compound against human cervical cancer cells (HeLa cells) (IC50 = 0.15 ± 0.05 µg/mL or 0.28 +/- 0.09 µM). Peptides were constructed on Rink amide resin from C- to N-terminus followed by capping by α-furoic acid moiety. The synthesized peptides were purified by recycling RP-HPLC, and structures of all the peptides were confirmed by using FABMS/ESIMS, 1H- NMR, 13C-NMR, and HR-FABMS. Conjugate 4 was furthermore found to be specifically active against human cervical cancer cells since it did not inhibit the proliferation of other human normal cells (HUVEC (human umbilical vein endothelial cells) and IMR-90 (normal human fibroblasts)), and cancer cells tested (HUVEC, MCF-7, and MDA-MB-231 cells), as well as in mice 3T3 cells (normal fibroblasts). This study revealed a good structure activity relationship of various peptide conjugates. Conjugate 4 in branched forms (4a and 4b) were also synthesized and evaluated against HeLa cells, and results revealed that both were inactive. Atomic force microscopy (AFM) studies and staining with rhodamine 123 and propidium iodide (PI) revealed that conjugate 4 possesses a membranolytic effect and causes the loss of mitochondrial membrane potential.


Assuntos
Antineoplásicos/química , Furanos/química , Peptídeos/química , Neoplasias do Colo do Útero/tratamento farmacológico , Células 3T3 , Amidas , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células Endoteliais/efeitos dos fármacos , Feminino , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração Inibidora 50 , Células MCF-7 , Espectroscopia de Ressonância Magnética , Camundongos , Microscopia de Força Atômica , Domínios Proteicos
12.
Proc Natl Acad Sci U S A ; 117(32): 19168-19177, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719135

RESUMO

The emergence of superbugs developing resistance to antibiotics and the resurgence of microbial infections have led scientists to start an antimicrobial arms race. In this context, we have previously identified an active RiPP, the Ruminococcin C1, naturally produced by Ruminococcus gnavus E1, a symbiont of the healthy human intestinal microbiota. This RiPP, subclassified as a sactipeptide, requires the host digestive system to become active against pathogenic Clostridia and multidrug-resistant strains. Here we report its unique compact structure on the basis of four intramolecular thioether bridges with reversed stereochemistry introduced posttranslationally by a specific radical-SAM sactisynthase. This structure confers to the Ruminococcin C1 important clinical properties including stability to digestive conditions and physicochemical treatments, a higher affinity for bacteria than simulated intestinal epithelium, a valuable activity at therapeutic doses on a range of clinical pathogens, mediated by energy resources disruption, and finally safety for human gut tissues.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Clostridiales/química , Peptídeos/química , Peptídeos/farmacologia , Antibacterianos/isolamento & purificação , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Peptídeos/isolamento & purificação
13.
Antibiotics (Basel) ; 9(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640578

RESUMO

The biological activities of berberine, a natural plant molecule, are known to be affected by structural modifications, mostly at position 9 and/or 13. A series of new 13-substituted berberine derivatives were synthesized and evaluated in term of antimicrobial activity using various microorganisms associated to human diseases. Contrarily to the original molecule berberine, several derivatives were found strongly active in microbial sensitivity tests against Mycobacterium, Candida albicans and Gram-positive bacteria, including naïve or resistant Bacillus cereus, Staphylococcus aureus and Streptococcus pyogenes with minimal inhibitory concentration (MIC) of 3.12 to 6.25 µM. Among the various Gram-negative strains tested, berberine's derivatives were only found active on Helicobacter pylori and Vibrio alginolyticus (MIC values of 1.5-3.12 µM). Cytotoxicity assays performed on human cells showed that the antimicrobial berberine derivatives caused low toxicity resulting in good therapeutic index values. In addition, a mechanistic approach demonstrated that, contrarily to already known berberine derivatives causing either membrane permeabilization, DNA fragmentation or interacting with FtsZ protein, active derivatives described in this study act through inhibition of the synthesis of peptidoglycan or RNA. Overall, this study shows that these new berberine derivatives can be considered as potent and safe anti-bacterial agents active on human pathogenic microorganisms, including ones resistant to conventional antibiotics.

14.
Biomolecules ; 9(10)2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614561

RESUMO

Helicobacterpylori is one of the most prevalent pathogens colonizing 50% of the world's population and causing gastritis and gastric cancer. Even with triple and quadruple antibiotic therapies, H. pylori shows increased prevalence of resistance to conventional antibiotics and treatment failure. Due to their pore-forming activity, antimicrobial peptides (AMP) are considered as a good alternative to conventional antibiotics, particularly in the case of resistant bacteria. In this study, temporin-SHa (a frog AMP) and its analogs obtained by Gly to Ala substitutions were tested against H. pylori. Results showed differences in the antibacterial activity and toxicity of the peptides in relation to the number and position of D-Ala substitution. Temporin-SHa and its analog NST1 were identified as the best molecules, both peptides being active on clinical resistant strains, killing 90-100% of bacteria in less than 1 h and showing low to no toxicity against human gastric cells and tissue. Importantly, the presence of gastric mucins did not prevent the antibacterial effect of temporin-SHa and NST1, NST1 being in addition resistant to pepsin. Taken together, our results demonstrated that temporin-SHa and its analog NST1 could be considered as potential candidates to treat H. pylori, particularly in the case of resistant strains.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Helicobacter pylori/crescimento & desenvolvimento , Humanos , Espectrometria de Massas , Testes de Sensibilidade Microbiana
15.
Sci Adv ; 5(9): eaaw9969, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31579822

RESUMO

A major public health challenge today is the resurgence of microbial infections caused by multidrug-resistant strains. Consequently, novel antimicrobial molecules are actively sought for development. In this context, the human gut microbiome is an under-explored potential trove of valuable natural molecules, such as the ribosomally-synthesized and post-translationally modified peptides (RiPPs). The biological activity of the sactipeptide subclass of RiPPs remains under-characterized. Here, we characterize an antimicrobial sactipeptide, Ruminococcin C1, purified from the caecal contents of rats mono-associated with Ruminococcus gnavus E1, a human symbiont. Its heterologous expression and post-translational maturation involving a specific sactisynthase establish a thioether network, which creates a double-hairpin folding. This original structure confers activity against pathogenic Clostridia and multidrug-resistant strains but no toxicity towards eukaryotic cells. Therefore, the Ruminococcin C1 should be considered as a valuable candidate for drug development and its producer strain R. gnavus E1 as a relevant probiotic for gut health enhancement.


Assuntos
Antibiose , Microbioma Gastrointestinal , Ruminococcus/fisiologia , Simbiose , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/química , Farmacorresistência Bacteriana Múltipla , Humanos , Proteólise , Ratos , Ruminococcus/efeitos dos fármacos
16.
Mar Drugs ; 17(9)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470685

RESUMO

Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms. In metazoans, they act as host defense factors by eliminating microbial pathogens. But they also help to select the colonizing bacterial symbionts while coping with specific environmental challenges. Although many AMPs share common structural characteristics, for example having an overall size between 10-100 amino acids, a net positive charge, a γ-core motif, or a high content of cysteines, they greatly differ in coding sequences as a consequence of multiple parallel evolution in the face of pathogens. The majority of AMPs is specific of certain taxa or even typifying species. This is especially the case of annelids (ringed worms). Even in regions with extreme environmental conditions (polar, hydrothermal, abyssal, polluted, etc.), worms have colonized all habitats on Earth and dominated in biomass most of them while co-occurring with a large number and variety of bacteria. This review surveys the different structures and functions of AMPs that have been so far encountered in annelids and nematodes. It highlights the wide diversity of AMP primary structures and their originality that presumably mimics the highly diverse life styles and ecology of worms. From the unique system that represents marine annelids, we have studied the effect of abiotic pressures on the selection of AMPs and demonstrated the promising sources of antibiotics that they could constitute.


Assuntos
Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Helmintos/metabolismo , Aminoácidos/metabolismo , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Ecossistema , Humanos
17.
Toxins (Basel) ; 11(9)2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484420

RESUMO

Filamentous fungi, although producing noxious molecules such as mycotoxins, have been used to produce numerous drugs active against human diseases such as paclitaxel, statins, and penicillin, saving millions of human lives. Cyclodepsipeptides are fungal molecules with potentially adverse and positive effects. Although these peptides are not novel, comparative studies of their antimicrobial activity, toxicity, and mechanism of action are still to be identified. In this study, the fungal cyclohexadepsipeptides enniatin (ENN) and beauvericin (BEA) were assessed to determine their antimicrobial activity and cytotoxicity against human cells. Results showed that these peptides were active against Gram-positive bacteria, Mycobacterium, and fungi, but not against Gram-negative bacteria. ENN and BEA had a limited hemolytic effect, yet were found to be toxic at low doses to nucleated human cells. Both peptides also interacted with bacterial lipids, causing low to no membrane permeabilization, but induced membrane depolarization and inhibition of macromolecules synthesis. The structure-activity analysis showed that the chemical nature of the side chains present on ENN and BEA (either iso-propyl, sec-butyl, or phenylmethyl) impacts their interaction with lipids, antimicrobial action, and toxicity.


Assuntos
Anti-Infecciosos/farmacologia , Depsipeptídeos/farmacologia , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/química , Eritrócitos/efeitos dos fármacos , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade
18.
Arch Toxicol ; 93(4): 1039-1049, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30854615

RESUMO

Trefoil factors (TFFs) are bioactive peptides expressed by several epithelia, including the intestine, where they regulate key functions such as tissue regeneration, barrier function and inflammation. Although food-associated mycotoxins, including deoxynivalenol (DON), are known to impact many intestinal functions, modulation of TFFs during mycotoxicosis has never been investigated. Here, we analyzed the effect of DON on TFFs expression using both human goblet cells (HT29-16E cells) and porcine intestinal explants. Results showed that very low doses of DON (nanomolar range) inhibit the secretion of TFFs by human goblet cells (IC50 of 361, 387 and 243 nM for TFF1, 2 and 3, respectively) and prevent wound healing. RT-qPCR analysis demonstrated that the inhibitory effect of DON is related to a suppression of TFFs mRNA expression. Experiments conducted on porcine intestinal explants confirmed the results obtained on cells. Finally, the use of specific inhibitors of signal pathways demonstrated that DON-mediated suppression of TFFs expression mainly involved Protein Kinase R and the MAP kinases (MAPK) p38 and ERK1/2. Taken together, our results show for the first time that at very low doses, DON suppresses the expression and production of intestinal TFFs and alters wound healing. Given the critical role of TFFs in tissue repair, our results suggest that DON-mediated suppression of TFFs contributes to the alterations of intestinal integrity the caused by this toxin.


Assuntos
Expressão Gênica/efeitos dos fármacos , Células Caliciformes/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Fator Trefoil-3/genética , Tricotecenos/toxicidade , Animais , Células CACO-2 , Técnicas de Cultura de Células , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Caliciformes/imunologia , Células Caliciformes/metabolismo , Células HT29 , Humanos , Jejuno/imunologia , Jejuno/metabolismo , Suínos , Fator Trefoil-3/metabolismo
19.
Eur J Med Chem ; 165: 133-141, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30665143

RESUMO

A set of variously substituted aurones was synthesized and evaluated against Methicillin-Resistant S. aureus (MRSA) and P. aeruginosa. Several analogues were found active against MRSA, but no effect was recorded against P. aeruginosa. Compounds 27, 30 and 33 showed low cytotoxicity, and were tested against a full range of bacterial (Gram-positive and Gram-negative) and fungal species, including resistant strains. These aurones displayed a selective inhibition of Gram-positive bacteria with excellent Therapeutic Index values, while showing no significant action on several Gram-negative strains, H. pylori and V. alginolyticus being the only susceptible strains among the Gram-negative bacteria tested. A permeabilization assay showed that the antibacterial activity of at least some of the aurones could be linked to alterations of the bacterial membrane. Overall, this study endorses the use of the aurone scaffold for the development of new potent and selective antibacterial agents.


Assuntos
Antibacterianos/química , Benzofuranos/química , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/farmacologia , Benzofuranos/farmacologia , Membrana Celular/efeitos dos fármacos , Bactérias Gram-Positivas/ultraestrutura , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA