Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732664

RESUMO

The lifespan of an electrical transformer, primarily determined by the condition of its solid insulation, is well known under various operating conditions when mineral oil is the coolant in these machines. However, there is a trend toward replacing this oil with biodegradable fluids, especially esters; therefore, an understanding of the ageing of solid insulation with these fluids is essential. Currently available data do not allow for the selection of the best ester among those available on the market, as each study applies different conditions, making it impossible to compare results. Thus, this paper analyses the degradation of Kraft and Thermally Upgraded Kraft papers with the following five most promising commercial esters: sunflower, rapeseed, soybean, palm, and synthetic. The materials underwent accelerated thermal ageing at 130, 150, and 170 °C, and the integrity of the papers was evaluated through their polymerisation degree and the obtaining of the degradation kinetic models. The wide range of materials studied in this work, which were subjected to the same treatments, allows for a comparison of the esters, revealing significant differences in the impact of the alternative fluids. Sunflower, rapeseed, and soybean esters provided the best paper protection, i.e., the degree of polymerisation of Kraft paper in the tests at 150 °C decreased by 71% with these fluids, compared to the 83% reduction with mineral oil, 79% reduction with palm ester, and 75% reduction with synthetic ester. Furthermore, different kinetic models were obtained to predict the degradation; it was concluded that the Emsley model provides the best fit. Additionally, it was found that the behaviour of a dielectric fluid with one type of paper cannot be extrapolated, which is only noticeable in broad-scope studies.

2.
Nanomaterials (Basel) ; 12(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35957155

RESUMO

Amidst the new techniques facing the improvement of cooling and insulating efficiency and the design of electric transformers, constrained by the current technologies, one of the more promising is the substitution of traditional dielectric oils for nanofluids. Research on nanofluids for their application in transformers as a coolant and dielectric medium have been performed during the last two decades and continue today. This review tries to collect and analyze the available information in this field and to offer it already dissected to researchers, focusing on the preparation methods and how nanoparticles affect the main properties of the base fluids. Here we also addressed the influence of different parameters as particle characteristics or environmental conditions in nanofluids performance, the evolution with time of the measured properties, or the neighboring relationship of nanofluids with other transformer components. In this sense, the most reviewed articles reflect enhancements of thermal conductivity or dielectric strength, as well as an improvement of time evolution of these properties, with respect to those that are found in base fluids, and, also, a better interaction between these nanofluids and dielectric cellulosics. Thus, the use of dielectric nanofluids in transformers may allow these machines to work safer or over their design parameters, reducing the risk of failure of the electrical networks and enhancing their life expectancy. Nevertheless, these advantages will not be useful unless a proper stability of nanofluids is ensured, which is achieved in a small part of revised articles. A compendium of the preparation methodology with this aim is proposed, to be checked in future works.

3.
Nanomaterials (Basel) ; 10(4)2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32224919

RESUMO

The assessment of a TiO2 vegetal-based dielectric nanofluid has been carried out, and its characteristics and behavior have been tested and compared with a previously tested maghemite nanofluid. The results obtained reflect a similar affectation of the main properties, with a maximal improvement of the breakdown voltage of 33% at 0.5 kg/m3, keeping the thermal conductivity and the viscosity almost constant, especially the first one. This thermal characterization agrees with the results obtained when applying the TiO2 optimal nanofluid in the cooling of an experimental setup, with a slightly worse performance than the base fluid. Nevertheless, this performance is the opposite to that noticed with the ferrofluid, which was capable of improving the cooling of the transformer and decreasing its temperature. The similarities between the characterizations of both nanofluids, the differences in their cooling performances and their different magnetic natures seem to point out the presence of additional thermomagnetic buoyancy forces to support the improvement of the cooling.

4.
Polymers (Basel) ; 11(4)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30960556

RESUMO

Copolyamides derived from even 1,4-butanediamine and different mixtures of odd dicarboxylic acids with a great difference in the number of methylene groups (i.e., glutaric and azelaic acids with 3 and 7 groups, respectively) have been synthesized, characterized and structurally studied. Calorimetric analyses revealed a complex behavior with multiple melting peaks associated to lamellar reordering and the presence of defective crystals. Equilibrium melting temperatures were evaluated and showed a eutectic behavior with composition. Copolymers were able to crystallize even for samples with comonomer percentages close to 50%. Negative and ringed spherulites from the melt state and small lath-like lamellar crystals from dilute solution crystallizations were attained. Furthermore, calorimetric data pointed out the exclusion of the less abundant monomer from the lattice of the predominant structure. All samples at room temperature showed a similar crystalline structure (form I) defined by two predominant reflections at spacings close to 0.430 and 0.380 nm, which has been related for even-odd nylons with a two-hydrogen bonded structure. Real time synchrotron experiments showed that melt crystallized samples have two polymorphic transitions on heating, which were practically reversible and consequently were also detected during cooling from the melt state. Interestingly, a different behavior was detected among solution crystallized samples and specifically the transition to the intermediate structure (form II) was not detected during heating for samples enriched on the azelate component or more precisely when they were exclusively crystallized in the form I.

5.
Polymers (Basel) ; 10(2)2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30966234

RESUMO

Crystalline morphology and structure of nylon 4 9 have been studied by means of optical and transmission electron microscopies, and X-ray diffraction. Rhombic crystals were characteristic of crystallization from glycerin dilute solutions, although the final morphology was dependent on the crystallization temperature. In any case, a single electron diffraction pattern was always obtained, being characteristic a 2 mm symmetry and reflections at spacings that were indicative of a projected rectangular unit cell with hydrogen bonds established along two planar directions (i.e., the diagonals of the unit cell), as it was determined from related polyamides. Crystallization from the melt gave rise to negative birefringent spherulites with a morphology (axialitic, speckled or ringed) that was dependent on the crystallization temperature. Kinetic analysis indicated that melt crystallization took place according to two growth mechanisms (Regimes II and III), which reflect distinct secondary nucleation rates. A complex polymorphic behavior on heating and cooling processes was evidenced by real time synchrotron experiments, being determined an intermediate crystalline structure as well as the typical pseudohexagonal arrangement associated to the Brill transition. Polymorphic transitions were highly dependent on the initial crystalline structure, being enhanced the structural transition from the low temperature structure to the intermediate one when traces of the latter were initially present. Calorimetric and infrared studies supported also the detected thermal transitions of nylon 4 9.

6.
Polymers (Basel) ; 9(8)2017 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30970997

RESUMO

Ultrasound micro-molding technology was successfully applied to prepare nanocomposites based on a poly(ε-caprolactone) (PCL) matrix and multi-walled carbon nanotubes (MWCNTs). Optimization of processing parameters (i.e. amplitude, force and time) was crucial to obtain nanocomposites without any evidence of degradation, high material saving and short processing time (7⁻8 s). Good dispersion of nanotubes was achieved after processing previously formed solvent casting films. This dispersion was even partially detected in pieces directly obtained from powder mixtures of both components. Incorporation of MWCNTs had a remarkable influence on melting and crystallization processes, which were systematically studied by time resolved synchrotron experiments. Results indicated higher melting and crystallization temperatures for the nanocomposite, with temperature differences higher than 5 °C. Carbon nanotubes were effective nucleating agents and had an influence on crystallinity, crystallization rate and even on lamellar morphology, which was evaluated by analysis of the correlation function of small angle diffraction profiles. Crystallinity within lamellar stacks was lower for the solvent casting nanocomposite, but in this case lamellae underwent a thickening process during heating that accounted for the increase in the melting temperature. Crystallization from the melt rendered similar lamellar morphologies at the end of the process due to a lamellar insertion mechanism.

7.
Ultrason Sonochem ; 21(4): 1557-69, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24457002

RESUMO

Ultrasound technology was proved as an efficient processing technique to obtain micro-molded specimens of polylactide (PLA) and polybutylene succinate (PBS), which were selected as examples of biodegradable polyesters widely employed in commodity and specialty applications. Operational parameters such as amplitude, molding force and processing time were successfully optimized to prepare samples with a decrease in the number average molecular weight lower than 6%. Ultrasonic waves also seemed an ideal energy source to provide effective disaggregation of clay silicate layers, and therefore exfoliated nanocomposites. X-ray diffraction patterns of nanocomposites prepared by direct micro-molding of PLA or PBS powder mixtures with natural montmorillonite or different organo-modified clays showed the disappearance of the 001 silicate reflection for specimens having up to 6 wt.% clay content. All electron micrographs revealed relatively homogeneous dispersion and sheet nanostructures oriented in the direction of the melt flow. Incorporation of clay particles during processing had practically no influence on PLA characteristics but enhanced PBS degradation when an organo-modifier was employed. This was in agreement with thermal stability data deduced from thermogravimetric analysis. Cold crystallization experiments directly performed on micro-molded PLA specimens pointed to a complex influence of clay particles reflected by the increase or decrease of the overall non-isothermal crystallization rate when compared to the neat polymer. In all cases, the addition of clay led to a clear decrease in the Avrami exponent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA