Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mucosal Immunol ; 17(2): 155-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185331

RESUMO

The elderly population is highly susceptible to developing respiratory diseases, including tuberculosis, a devastating disease caused by the airborne pathogen Mycobacterium tuberculosis (M.tb) that kills one person every 18 seconds. Once M.tb reaches the alveolar space, it contacts alveolar lining fluid (ALF), which dictates host-cell interactions. We previously determined that age-associated dysfunction of soluble innate components in human ALF leads to accelerated M.tb growth within human alveolar macrophages. Here we determined the impact of human ALF on M.tb infection of alveolar epithelial type cells (ATs), another critical lung cellular determinant of infection. We observed that elderly ALF (E-ALF)-exposed M.tb had significantly increased intracellular growth with rapid replication in ATs compared to adult ALF (A-ALF)-exposed bacteria, as well as a dampened inflammatory response. A potential mechanism underlying this accelerated growth in ATs was our observation of increased bacterial translocation into the cytosol, a compartment that favors bacterial replication. These findings in the context of our previous studies highlight how the oxidative and dysfunctional status of the elderly lung mucosa determines susceptibility to M.tb infection, including dampening immune responses and favoring bacterial replication within alveolar resident cell populations, including ATs, the most abundant resident cell type within the alveoli.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Idoso , Adulto , Humanos , Células Epiteliais Alveolares , Citosol , Pulmão/microbiologia , Macrófagos Alveolares
2.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808780

RESUMO

Upon infection, Mycobacterium tuberculosis ( M.tb ) reaches the alveolar space and comes in close contact with human alveolar lining fluid (ALF) for an uncertain period of time prior to its encounter with alveolar cells. We showed that homeostatic ALF hydrolytic enzymes modify the M.tb cell envelope, driving M.tb -host cell interactions. Still, the contribution of ALF during M.tb infection is poorly understood. Here, we exposed 4 M.tb strains with different levels of virulence, transmissibility, and drug resistance (DR) to physiological concentrations of human ALF for 15-min and 12-h, and performed RNA sequencing. Gene expression analysis showed a temporal and strain-specific adaptation to human ALF. Differential expression (DE) of ALF-exposed vs. unexposed M.tb revealed a total of 397 DE genes associated with lipid metabolism, cell envelope and processes, intermediary metabolism and respiration, and regulatory proteins, among others. Most DE genes were detected at 12-h post-ALF exposure, with DR- M.tb strain W-7642 having the highest number of DE genes. Interestingly, genes from the KstR2 regulon, which controls the degradation of cholesterol C and D rings, were significantly upregulated in all strains post-ALF exposure. These results indicate that M.tb -ALF contact drives initial metabolic and physiologic changes in M.tb , with potential implications in infection outcome. IMPORTANCE: Tuberculosis, caused by airborne pathogen Mycobacterium tuberculosis ( M.tb ), is one of the leading causes of mortality worldwide. Upon infection, M.tb reaches the alveoli and gets in contact with human alveolar lining fluid (ALF), where ALF hydrolases modify the M.tb cell envelope driving subsequent M.tb -host cell interactions. Still, the contributions of ALF during infection are poorly understood. We exposed 4 M.tb strains to ALF for 15-min and 12-h and performed RNA sequencing, demonstrating a temporal and strain-specific adaptation of M.tb to ALF. Interestingly, genes associated with cholesterol degradation were highly upregulated in all strains. This study shows for the first time that ALF drives global metabolic changes in M.tb during the initial stages of the infection, with potential implications in disease outcome. Biologically relevant networks and common and strain-specific bacterial determinants derived from this study could be further investigated as potential therapeutic candidates.

3.
Pathogens ; 11(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36297158

RESUMO

Tuberculosis (TB) is one of the leading causes of death due to its being an infectious disease, caused by the airborne pathogen Mycobacterium tuberculosis (M.tb). Approximately one-fourth of the world's population is infected with latent M.tb, and TB is considered a global threat killing over 4000 people every day. The risk of TB susceptibility and mortality is significantly increased in individuals aged 65 and older, confirming that the elderly represent one of the largest reservoirs for M.tb infection. The elderly population faces many challenges that increase their risk of developing respiratory diseases, including TB. The challenges the elderly face in this regard include the following: decreased lung function, immuno-senescence, inflammaging, adverse drug effects, low tolerance to anti-TB drugs, lack of suitable diagnoses/interventions, and age-associated comorbidities. In order to find new therapeutic strategies to maintain lung homeostasis and resistance to respiratory infections as we age, it is necessary to understand the molecular and cellular mechanisms behind natural lung aging. This review focuses primarily on why the elderly are more susceptible to TB disease and death, with a focus on pulmonary function and comorbidities.

4.
Exp Gerontol ; 167: 111904, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35918043

RESUMO

Age-related changes in the immune system increase susceptibility to infectious diseases. Vaccines are an important tool to prevent infection or boost immunological memory; however, vaccines are less effective in aged individuals. In order to protect our aging population from the threat of infectious diseases, we must gain a better understanding of age-related alterations in the immune response at the site of infection. The lung is one site of frequent infection in older individuals. In this study, we expanded on our previous work to study vaccine-induced immune responses in the local lung environment in a pilot study of aged rhesus macaques. To do this, we developed an in vivo model to probe recall responses to tuberculin challenge in the lungs 8 weeks and 16 weeks post-Mycobacterium bovis BCG vaccination by performing targeted bronchoalveolar lavages. In parallel, we determined peripheral blood responses in vaccinated animals to compare systemic and local tissue responses to tuberculin challenge. We found that following lung tuberculin challenge 8 weeks post-vaccination, aged animals had reduced T cell responses, particularly within the CD8+ T cell compartment. Aged animals had decreased CD8+ effector and memory T cell recall responses and less activated CD8+ T cells. This diminished lung CD8+ T cell response in aged animals was maintained over time. Despite changes in the CD8+ T cell compartment, lung CD4+ T cell responses were similar between age groups. In the peripheral blood, we observed age-related changes in immune cell populations and plasma levels of immune mediators that were present prior to vaccination. Lastly, we found that peripheral blood mononuclear cells from aged BCG-vaccinated animals were functional in their response to antigen stimulation, behaving in a similar manner to those from their adult counterparts. These systemic observations were similar to those found in our previous study of BCG-vaccinated baboons, supporting the notion that tissue immune responses, and not systemic responses, to vaccination and challenge are impaired with age. These findings expand on our previous work to show that in addition to the skin, age-related changes in the lung environment impact recall immune responses to vaccination and challenge. The impact of age on local tissue responses to infectious challenge should be accounted for in the development of therapeutics or medical interventions aimed at boosting immune recall responses of aged individuals.


Assuntos
Doenças Transmissíveis , Mycobacterium bovis , Animais , Vacina BCG , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Pulmão , Macaca mulatta , Projetos Piloto , Tuberculina , Vacinação
5.
J Gerontol A Biol Sci Med Sci ; 77(10): 1969-1974, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460553

RESUMO

The older adult population, estimated to double by 2050, is at increased risk of respiratory infections and other pulmonary diseases. Biochemical changes in the lung alveolar lining fluid (ALF) and in alveolar compartment cells can alter local immune responses as we age, generating opportunities for invading pathogens to establish successful infections. Indeed, the lung alveolar space of older adults is a pro-inflammatory, pro-oxidative, dysregulated environment that remains understudied. We performed an exploratory, quantitative proteomic profiling of the soluble proteins present in ALF, developing insight into molecular fingerprints, pathways, and regulatory networks that characterize the alveolar space in old age, comparing it to that of younger individuals. We identified 457 proteins that were significantly differentially expressed in older adult ALF, including increased production of matrix metalloproteinases, markers of cellular senescence, antimicrobials, and proteins of neutrophilic granule origin, among others, suggesting that neutrophils in the lungs of older adults could be potential contributors to the dysregulated alveolar environment with increasing age. Finally, we describe a hypothetical regulatory network mediated by the serum response factor that could explain the neutrophilic profile observed in the older adult population.


Assuntos
Proteômica , Fator de Resposta Sérica , Idoso , Envelhecimento , Humanos , Pulmão , Mucosa , Fator de Resposta Sérica/metabolismo
6.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055170

RESUMO

Tuberculosis (TB) infection, caused by the airborne pathogen Mycobacterium tuberculosis (M.tb), resulted in almost 1.4 million deaths in 2019, and the number of deaths is predicted to increase by 20% over the next 5 years due to the COVID-19 pandemic. Upon reaching the alveolar space, M.tb comes into close contact with the lung mucosa before and after its encounter with host alveolar compartment cells. Our previous studies show that homeostatic, innate soluble components of the alveolar lining fluid (ALF) can quickly alter the cell envelope surface of M.tb upon contact, defining subsequent M.tb-host cell interactions and infection outcomes in vitro and in vivo. We also demonstrated that ALF from 60+ year old elders (E-ALF) vs. healthy 18- to 45-year-old adults (A-ALF) is dysfunctional, with loss of homeostatic capacity and impaired innate soluble responses linked to high local oxidative stress. In this study, a targeted transcriptional assay shows that M.tb exposure to human ALF alters the expression of its cell envelope genes. Specifically, our results indicate that A-ALF-exposed M.tb upregulates cell envelope genes associated with lipid, carbohydrate, and amino acid metabolism, as well as genes associated with redox homeostasis and transcriptional regulators. Conversely, M.tb exposure to E-ALF shows a lesser transcriptional response, with most of the M.tb genes unchanged or downregulated. Overall, this study indicates that M.tb responds and adapts to the lung alveolar environment upon contact, and that the host ALF status, determined by factors such as age, might play an important role in determining infection outcome.


Assuntos
Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Líquido da Lavagem Broncoalveolar , Estruturas Celulares , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética , Masculino , Manosídeos/biossíntese , Manosídeos/genética , Manosiltransferases/biossíntese , Manosiltransferases/genética , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA