Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294517

RESUMO

Clathrin-associated trafficking is a major mechanism for intracellular communication, as well as for cells to communicate with the extracellular environment. A decreased oxygen availability termed hypoxia has been described to influence this mechanism in the past. Mostly biochemical studies were applied in these analyses, which miss spatiotemporal information. We have applied live cell microscopy and a newly developed analysis script in combination with a GFP-tagged clathrin-expressing cell line to obtain insight into the dynamics of the effect of hypoxia. Number, mobility and directionality of clathrin-coated vesicles were analysed in non-stimulated cells as well as after stimulation with epidermal growth factor (EGF) or transferrin in normoxic and hypoxic conditions. These data reveal cargo-specific effects, which would not be observable with biochemical methods or with fixed cells and add to the understanding of cell physiology in hypoxia. The stimulus-dependent consequences were also reflected in the final cellular output, i.e. decreased EGF signaling and in contrast increased iron uptake in hypoxia.

2.
Sci Total Environ ; 837: 155686, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523331

RESUMO

The role of winged aquatic insects that emerge from streams and subsidize terrestrial ecosystems has been demonstrated for natural forest landscapes, but almost no information is available for intensive agricultural landscapes. This study is the first to estimate aquatic subsidies provided by flying insects that emerge from streams and land on cropland. We investigated three major groups of aquatic insects - Trichoptera, Ephemeroptera and Chironomidae (Diptera) - that emerged from 12 third-order temperate, agricultural streams. We simultaneously monitored their emergence using floating traps and their terrestrial dispersal using passive interception traps. We estimated that the annual aquatic emerging dry mass (DM) of these groups varied from 1.4-7.5 g m-2 yr-1, depending on the stream. We used a Bayesian approach to estimate parameters of the terrestrial dispersal function of each group. We combined emerging DM and the dispersal parameters to estimate how terrestrial deposition of aquatic insect DM varied with increasing distance from streams. The results highlighted that emerging DM and dispersal to land could be higher in intensive agricultural landscapes than that previously described in natural settings. We estimated that 12.5 kg ha-1 yr-1 of winged aquatic insect DM fell to the ground 0-10 m from stream edges, composed mainly of Ephemeroptera and Trichoptera. We also estimated that 2.2 kg DM ha-1 yr-1 fell 10-50 m from the stream, especially small-bodied species of Chironomidae, throughout the year, except for the coldest weeks of winter. By influencing aquatic insect communities that emerge from streams, intensive agricultural practices change the magnitude and spatial extent of aquatic subsidy deposition on land. Implications for terrestrial food webs and ecosystem services provided to agriculture are discussed.


Assuntos
Chironomidae , Ephemeroptera , Agricultura , Animais , Teorema de Bayes , Ecossistema , Cadeia Alimentar , Insetos , Rios
3.
Basic Res Cardiol ; 116(1): 66, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34940922

RESUMO

Endothelial nitric oxide synthase (eNOS) activation in the heart plays a key role in exercise-induced cardioprotection during ischemia-reperfusion, but the underlying mechanisms remain unknown. We hypothesized that the cardioprotective effect of exercise training could be explained by the re-localization of eNOS-dependent nitric oxide (NO)/S-nitrosylation signaling to mitochondria. By comparing exercised (5 days/week for 5 weeks) and sedentary Wistar rats, we found that exercise training increased eNOS level and activation by phosphorylation (at serine 1177) in mitochondria, but not in the cytosolic subfraction of cardiomyocytes. Using confocal microscopy, we confirmed that NO production in mitochondria was increased in response to H2O2 exposure in cardiomyocytes from exercised but not sedentary rats. Moreover, by S-nitrosoproteomic analysis, we identified several key S-nitrosylated proteins involved in mitochondrial function and cardioprotection. In agreement, we also observed that the increase in Ca2+ retention capacity by mitochondria isolated from the heart of exercised rats was abolished by exposure to the NOS inhibitor L-NAME or to the reducing agent ascorbate, known to denitrosylate proteins. Pre-incubation with ascorbate or L-NAME also increased mitochondrial reactive oxygen species production in cardiomyocytes from exercised but not from sedentary animals. We confirmed these results using isolated hearts perfused with L-NAME before ischemia-reperfusion. Altogether, these results strongly support the hypothesis that exercise training increases eNOS/NO/S-nitrosylation signaling in mitochondria, which might represent a key mechanism of exercise-induced cardioprotection.


Assuntos
Peróxido de Hidrogênio , Proteína S , Animais , Mitocôndrias , Miócitos Cardíacos , Óxido Nítrico , Óxido Nítrico Sintase Tipo III , Ratos , Ratos Wistar
4.
Glob Chang Biol ; 26(3): 1319-1337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31701595

RESUMO

A major challenge in understanding the response of populations to climate change is to separate the effects of local drivers acting independently on specific populations, from the effects of global drivers that impact multiple populations simultaneously and thereby synchronize their dynamics. We investigated the environmental drivers and the demographic mechanisms of the widespread decline in marine survival rates of Atlantic salmon (Salmo salar) over the last four decades. We developed a hierarchical Bayesian life cycle model to quantify the spatial synchrony in the marine survival of 13 large groups of populations (called stock units, SU) from two continental stock groups (CSG) in North America (NA) and Southern Europe (SE) over the period 1971-2014. We found strong coherence in the temporal variation in postsmolt marine survival among the 13 SU of NA and SE. A common North Atlantic trend explains 37% of the temporal variability of the survivals for the 13 SU and declines by a factor of 1.8 over the 1971-2014 time series. Synchrony in survival trends is stronger between SU within each CSG. The common trends at the scale of NA and SE capture 60% and 42% of the total variance of temporal variations, respectively. Temporal variations of the postsmolt survival are best explained by the temporal variations of sea surface temperature (SST, negative correlation) and net primary production indices (PP, positive correlation) encountered by salmon in common domains during their marine migration. Specifically, in the Labrador Sea/Grand Banks for populations from NA, 26% and 24% of variance is captured by SST and PP, respectively and in the Norwegian Sea for populations from SE, 21% and 12% of variance is captured by SST and PP, respectively. The findings support the hypothesis of a response of salmon populations to large climate-induced changes in the North Atlantic simultaneously impacting populations from distant continental habitats.


Assuntos
Mudança Climática , Salmo salar , Animais , Oceano Atlântico , Teorema de Bayes , Europa (Continente) , América do Norte , Noruega
5.
Sci Rep ; 5: 16293, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26559327

RESUMO

Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live. We employ a combination of long-term laboratory and mesocosm experiments containing natural prey and habitat to assess how warming and acidification affect the development, growth, and hunting behaviour in sharks. Although embryonic development was faster due to temperature, elevated temperature and CO2 had detrimental effects on sharks by not only increasing energetic demands, but also by decreasing metabolic efficiency and reducing their ability to locate food through olfaction. The combination of these effects led to considerable reductions in growth rates of sharks held in natural mesocosms with elevated CO2, either alone or in combination with higher temperature. Our results suggest a more complex reality for predators, where ocean acidification reduces their ability to effectively hunt and exert strong top-down control over food webs.


Assuntos
Aquecimento Global , Concentração de Íons de Hidrogênio , Comportamento Predatório , Água do Mar/química , Tubarões , Animais , Oceanos e Mares , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA