Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Commun ; 15(1): 2743, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38548768

RESUMO

Overexpression of BCL-xL and BCL-2 play key roles in tumorigenesis and cancer drug resistance. Advances in PROTAC technology facilitated recent development of the first BCL-xL/BCL-2 dual degrader, 753b, a VHL-based degrader with improved potency and reduced toxicity compared to previous small molecule inhibitors. Here, we determine crystal structures of VHL/753b/BCL-xL and VHL/753b/BCL-2 ternary complexes. The two ternary complexes exhibit markedly different architectures that are accompanied by distinct networks of interactions at the VHL/753b-linker/target interfaces. The importance of these interfacial contacts is validated via functional analysis and informed subsequent rational and structure-guided design focused on the 753b linker and BCL-2/BCL-xL warhead. This results in the design of a degrader, WH244, with enhanced potency to degrade BCL-xL/BCL-2 in cells. Using biophysical assays followed by in cell activities, we are able to explain the enhanced target degradation of BCL-xL/BCL-2 in cells. Most PROTACs are empirically designed and lack structural studies, making it challenging to understand their modes of action and specificity. Our work presents a streamlined approach that combines rational design and structure-based insights backed with cell-based studies to develop effective PROTAC-based cancer therapeutics.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteína bcl-X/metabolismo
2.
Nucleic Acids Res ; 51(22): 12224-12241, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953292

RESUMO

BRCA1-deficient cells have increased IRE1 RNase, which degrades multiple microRNAs. Reconstituting expression of one of these, miR-4638-5p, resulted in synthetic lethality in BRCA1-deficient cancer cells. We found that miR-4638-5p represses expression of TATDN2, a poorly characterized member of the TATD nuclease family. We discovered that human TATDN2 has RNA 3' exonuclease and endonuclease activity on double-stranded hairpin RNA structures. Given the cleavage of hairpin RNA by TATDN2, and that BRCA1-deficient cells have difficulty resolving R-loops, we tested whether TATDN2 could resolve R-loops. Using in vitro biochemical reconstitution assays, we found TATDN2 bound to R-loops and degraded the RNA strand but not DNA of multiple forms of R-loops in vitro in a Mg2+-dependent manner. Mutations in amino acids E593 and E705 predicted by Alphafold-2 to chelate an essential Mg2+ cation completely abrogated this R-loop resolution activity. Depleting TATDN2 increased cellular R-loops, DNA damage and chromosomal instability. Loss of TATDN2 resulted in poor replication fork progression in the presence of increased R-loops. Significantly, we found that TATDN2 is essential for survival of BRCA1-deficient cancer cells, but much less so for cognate BRCA1-repleted cancer cells. Thus, we propose that TATDN2 is a novel target for therapy of BRCA1-deficient cancers.


Assuntos
Neoplasias , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Replicação do DNA , Instabilidade Genômica , Magnésio , MicroRNAs/genética , Neoplasias/genética , Estruturas R-Loop
3.
Nat Commun ; 14(1): 4786, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553340

RESUMO

ISG15 plays a crucial role in the innate immune response and has been well-studied due to its antiviral activity and regulation of signal transduction, apoptosis, and autophagy. ISG15 is a ubiquitin-like protein that is activated by an E1 enzyme (Uba7) and transferred to a cognate E2 enzyme (UBE2L6) to form a UBE2L6-ISG15 intermediate that functions with E3 ligases that catalyze conjugation of ISG15 to target proteins. Despite its biological importance, the molecular basis by which Uba7 catalyzes ISG15 activation and transfer to UBE2L6 is unknown as there is no available structure of Uba7. Here, we present cryo-EM structures of human Uba7 in complex with UBE2L6, ISG15 adenylate, and ISG15 thioester intermediate that are poised for catalysis of Uba7-UBE2L6-ISG15 thioester transfer. Our structures reveal a unique overall architecture of the complex compared to structures from the ubiquitin conjugation pathway, particularly with respect to the location of ISG15 thioester intermediate. Our structures also illuminate the molecular basis for Uba7 activities and for its exquisite specificity for ISG15 and UBE2L6. Altogether, our structural, biochemical, and human cell-based data provide significant insights into the functions of Uba7, UBE2L6, and ISG15 in cells.


Assuntos
Citocinas , Enzimas de Conjugação de Ubiquitina , Humanos , Citocinas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Microscopia Crioeletrônica , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
4.
Sci Rep ; 13(1): 9161, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280236

RESUMO

Proteases encoded by SARS-CoV-2 constitute a promising target for new therapies against COVID-19. SARS-CoV-2 main protease (Mpro, 3CLpro) and papain-like protease (PLpro) are responsible for viral polyprotein cleavage-a process crucial for viral survival and replication. Recently it was shown that 2-phenylbenzisoselenazol-3(2H)-one (ebselen), an organoselenium anti-inflammatory small-molecule drug, is a potent, covalent inhibitor of both the proteases and its potency was evaluated in enzymatic and antiviral assays. In this study, we screened a collection of 34 ebselen and ebselen diselenide derivatives for SARS-CoV-2 PLpro and Mpro inhibitors. Our studies revealed that ebselen derivatives are potent inhibitors of both the proteases. We identified three PLpro and four Mpro inhibitors superior to ebselen. Independently, ebselen was shown to inhibit the N7-methyltransferase activity of SARS-CoV-2 nsp14 protein involved in viral RNA cap modification. Hence, selected compounds were also evaluated as nsp14 inhibitors. In the second part of our work, we employed 11 ebselen analogues-bis(2-carbamoylaryl)phenyl diselenides-in biological assays to evaluate their anti-SARS-CoV-2 activity in Vero E6 cells. We present their antiviral and cytoprotective activity and also low cytotoxicity. Our work shows that ebselen, its derivatives, and diselenide analogues constitute a promising platform for development of new antivirals targeting the SARS-CoV-2 virus.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Metiltransferases , Peptídeo Hidrolases , Antivirais/farmacologia , Antivirais/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular
5.
Nature ; 619(7970): 640-649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344589

RESUMO

Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Complexos Multiproteicos , Humanos , Microscopia Crioeletrônica , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Neoplasias/genética , Nucleoproteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Especificidade por Substrato
6.
Methods Mol Biol ; 2591: 171-188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36350549

RESUMO

Both severe acute respiratory syndrome coronavirus 1 and 2 (SARS-CoV-1 and SARS-CoV-2) encode a papain-like protease (PLpro), which plays a vital role in viral propagation. PLpro accomplishes this function by processing the viral polyproteins essential for viral replication and removing the small proteins, ubiquitin and ISG15 from the host's key immune signaling proteins, thereby preventing the host's innate immune response. Although PLpro from both SARS-CoV-1 and SARS-CoV-2 are structurally highly similar (83% sequence identity), they exhibit functional variability. Hence, to further elucidate the mechanism and aid in drug discovery efforts, the biochemical and kinetic characterization of PLpro is needed. This chapter describes step-by-step experimental procedures for evaluating PLpro activity in vitro using activity-based probes (ABPs) along with fluorescence-based substrates. Herein we describe a step-by-step experimental procedure to assess the activity of PLpro in vitro using a suite of activity-based probes (ABPs) and fluorescent substrates and how they can be applied as fast and yet sensitive methods to calculate kinetic parameters.


Assuntos
COVID-19 , Ubiquitina , Humanos , Ubiquitina/metabolismo , SARS-CoV-2/genética , Proteases Semelhantes à Papaína de Coronavírus , Papaína , Peptídeo Hidrolases/metabolismo , Ubiquitinas/metabolismo , Citocinas/metabolismo
7.
Sci Rep ; 12(1): 14230, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987981

RESUMO

Essential oils and aromatic extracts (oleoresins, absolutes, concretes, resinoids) are often used as food flavorings and constituents of fragrance compositions. The flavor and fragrance industry observed significant growth in the sales of some natural materials during the COVID-19 outbreak. Some companies worldwide are making false claims regarding the effectiveness of their essential oils or blends (or indirectly point toward this conclusion) against coronaviruses, even though the available data on the activity of plant materials against highly pathogenic human coronaviruses are very scarce. Our exploratory study aimed to develop pioneering knowledge and provide the first experimental results on the inhibitory properties of hundreds of flavor and fragrance materials against SARS-CoV-2 main and papain-like proteases and the antiviral potential of the most active protease inhibitors. As essential oils are volatile products, they could provide an interesting therapeutic strategy for subsidiary inhalation in the long term.


Assuntos
COVID-19 , Óleos Voláteis , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Óleos Voláteis/farmacologia , Inibidores de Proteases , SARS-CoV-2
8.
Nat Commun ; 13(1): 4880, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986001

RESUMO

The E1 enzyme Uba6 initiates signal transduction by activating ubiquitin and the ubiquitin-like protein FAT10 in a two-step process involving sequential catalysis of adenylation and thioester bond formation. To gain mechanistic insights into these processes, we determined the crystal structure of a human Uba6/ubiquitin complex. Two distinct architectures of the complex are observed: one in which Uba6 adopts an open conformation with the active site configured for catalysis of adenylation, and a second drastically different closed conformation in which the adenylation active site is disassembled and reconfigured for catalysis of thioester bond formation. Surprisingly, an inositol hexakisphosphate (InsP6) molecule binds to a previously unidentified allosteric site on Uba6. Our structural, biochemical, and biophysical data indicate that InsP6 allosterically inhibits Uba6 activity by altering interconversion of the open and closed conformations of Uba6 while also enhancing its stability. In addition to revealing the molecular mechanisms of catalysis by Uba6 and allosteric regulation of its activities, our structures provide a framework for developing Uba6-specific inhibitors and raise the possibility of allosteric regulation of other E1s by naturally occurring cellular metabolites.


Assuntos
Enzimas Ativadoras de Ubiquitina , Ubiquitina , Catálise , Domínio Catalítico , Humanos , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinas/metabolismo
9.
Cell Chem Biol ; 29(6): 927-929, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35714591

RESUMO

In this issue of Cell Chemical Biology, Douglas et al. describe a potent, specific, and cell-permeable furin inhibitor that interacts with a cryptic binding site to rescue hallmarks of cystic fibrosis in human ex vivo models. BOS-318 holds promise for development of therapeutics targeting an array of furin-dependent pathologies.


Assuntos
Fibrose Cística , Furina , Sítios de Ligação , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Furina/química , Furina/metabolismo , Humanos , Domínios Proteicos
10.
Nat Commun ; 12(1): 6896, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824248

RESUMO

PROteolysis-TArgeting Chimeras (PROTACs) have emerged as an innovative drug development platform. However, most PROTACs have been generated empirically because many determinants of PROTAC specificity and activity remain elusive. Through computational modelling of the entire NEDD8-VHL Cullin RING E3 ubiquitin ligase (CRLVHL)/PROTAC/BCL-xL/UbcH5B(E2)-Ub/RBX1 complex, we find that this complex can only ubiquitinate the lysines in a defined band region on BCL-xL. Using this approach to guide our development of a series of ABT263-derived and VHL-recruiting PROTACs, we generate a potent BCL-xL and BCL-2 (BCL-xL/2) dual degrader with significantly improved antitumor activity against BCL-xL/2-dependent leukemia cells. Our results provide experimental evidence that the accessibility of lysines on a target protein plays an important role in determining the selectivity and potency of a PROTAC in inducing protein degradation, which may serve as a conceptual framework to guide the future development of PROTACs.


Assuntos
Antineoplásicos/farmacologia , Leucemia/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia/tratamento farmacológico , Leucemia/genética , Lisina/química , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Conformação Proteica , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína bcl-X/química , Proteína bcl-X/genética
11.
Cell Rep ; 36(13): 109754, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34547223

RESUMO

The SARS-CoV-2 papain-like protease (PLpro) is a target for antiviral drug development. It is essential for processing viral polyproteins for replication and functions in host immune evasion by cleaving ubiquitin (Ub) and ubiquitin-like protein (Ubl) conjugates. While highly conserved, SARS-CoV-2 and SARS-CoV PLpro have contrasting Ub/Ubl substrate preferences. Using a combination of structural analyses and functional assays, we identify a molecular sensor within the S1 Ub-binding site of PLpro that serves as a key determinant of substrate specificity. Variations within the S1 sensor specifically alter cleavage of Ub substrates but not of the Ubl interferon-stimulated gene 15 protein (ISG15). Significantly, a variant of concern associated with immune evasion carries a mutation in the S1 sensor that enhances PLpro activity on Ub substrates. Collectively, our data identify the S1 sensor region as a potential hotspot of variability that could alter host antiviral immune responses to newly emerging SARS-CoV-2 lineages.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/ultraestrutura , SARS-CoV-2/genética , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , COVID-19/genética , COVID-19/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/genética , Células HEK293 , Humanos , Papaína/química , Papaína/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Ligação Proteica/genética , SARS-CoV-2/metabolismo , Especificidade por Substrato/genética , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais/metabolismo
12.
Nat Commun ; 12(1): 3444, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103528

RESUMO

AKT is involved in a number of key cellular processes including cell proliferation, apoptosis and metabolism. Hyperactivation of AKT is associated with many pathological conditions, particularly cancers. Emerging evidence indicates that arginine methylation is involved in modulating AKT signaling pathway. However, whether and how arginine methylation directly regulates AKT kinase activity remain unknown. Here we report that protein arginine methyltransferase 5 (PRMT5), but not other PRMTs, promotes AKT activation by catalyzing symmetric dimethylation of AKT1 at arginine 391 (R391). Mechanistically, AKT1-R391 methylation cooperates with phosphatidylinositol 3,4,5 trisphosphate (PIP3) to relieve the pleckstrin homology (PH)-in conformation, leading to AKT1 membrane translocation and subsequent activation by phosphoinositide-dependent kinase-1 (PDK1) and the mechanistic target of rapamycin complex 2 (mTORC2). As a result, deficiency in AKT1-R391 methylation significantly suppresses AKT1 kinase activity and tumorigenesis. Lastly, we show that PRMT5 inhibitor synergizes with AKT inhibitor or chemotherapeutic drugs to enhance cell death. Altogether, our study suggests that R391 methylation is an important step for AKT activation and its oncogenic function.


Assuntos
Arginina/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antineoplásicos/farmacologia , Biocatálise/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Metilação/efeitos dos fármacos , Camundongos Nus , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteína-Arginina N-Metiltransferases/deficiência , Proteínas Proto-Oncogênicas c-akt/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Nat Commun ; 12(1): 2370, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888705

RESUMO

E1 enzymes function as gatekeepers of ubiquitin (Ub) signaling by catalyzing activation and transfer of Ub to tens of cognate E2 conjugating enzymes in a process called E1-E2 transthioesterification. The molecular mechanisms of transthioesterification and the overall architecture of the E1-E2-Ub complex during catalysis are unknown. Here, we determine the structure of a covalently trapped E1-E2-ubiquitin thioester mimetic. Two distinct architectures of the complex are observed, one in which the Ub thioester (Ub(t)) contacts E1 in an open conformation and another in which Ub(t) instead contacts E2 in a drastically different, closed conformation. Altogether our structural and biochemical data suggest that these two conformational states represent snapshots of the E1-E2-Ub complex pre- and post-thioester transfer, and are consistent with a model in which catalysis is enhanced by a Ub(t)-mediated affinity switch that drives the reaction forward by promoting productive complex formation or product release depending on the conformational state.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Domínio Catalítico , Cristalografia por Raios X , Esterificação/fisiologia , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/isolamento & purificação , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/isolamento & purificação
14.
Front Chem ; 9: 819165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35186898

RESUMO

The emergence of severe acute respiratory syndrome (SARS-CoV-2) in 2019 marked the third occurrence of a highly pathogenic coronavirus in the human population since 2003. As the death toll surpasses 5 million globally and economic losses continue, designing drugs that could curtail infection and disease progression is critical. In the US, three highly effective Food and Drug Administration (FDA)-authorized vaccines are currently available, and Remdesivir is approved for the treatment of hospitalized patients. However, moderate vaccination rates and the sustained evolution of new viral variants necessitate the ongoing search for new antivirals. Several viral proteins have been prioritized as SARS-CoV-2 antiviral drug targets, among them the papain-like protease (PLpro) and the main protease (Mpro). Inhibition of these proteases would target viral replication, viral maturation, and suppression of host innate immune responses. Knowledge of inhibitors and assays for viruses were quickly adopted for SARS-CoV-2 protease research. Potential candidates have been identified to show inhibitory effects against PLpro and Mpro, both in biochemical assays and viral replication in cells. These results encourage further optimizations to improve prophylactic and therapeutic efficacy. In this review, we examine the latest developments of potential small-molecule inhibitors and peptide inhibitors for PLpro and Mpro, and how structural biology greatly facilitates this process.

15.
Sci Adv ; 6(42)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33067239

RESUMO

Viral papain-like cysteine protease (PLpro, NSP3) is essential for SARS-CoV-2 replication and represents a promising target for the development of antiviral drugs. Here, we used a combinatorial substrate library and performed comprehensive activity profiling of SARS-CoV-2 PLpro. On the scaffold of the best hits from positional scanning, we designed optimal fluorogenic substrates and irreversible inhibitors with a high degree of selectivity for SARS PLpro. We determined crystal structures of two of these inhibitors in complex with SARS-CoV-2 PLpro that reveals their inhibitory mechanisms and provides a molecular basis for the observed substrate specificity profiles. Last, we demonstrate that SARS-CoV-2 PLpro harbors deISGylating activity similar to SARSCoV-1 PLpro but its ability to hydrolyze K48-linked Ub chains is diminished, which our sequence and structure analysis provides a basis for. Together, this work has revealed the molecular rules governing PLpro substrate specificity and provides a framework for development of inhibitors with potential therapeutic value or drug repurposing.


Assuntos
Betacoronavirus/enzimologia , Desenho de Fármacos , Inibidores de Proteases/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Sequência de Aminoácidos , Betacoronavirus/isolamento & purificação , Sítios de Ligação , COVID-19 , Domínio Catalítico , Proteases 3C de Coronavírus , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Inibidores de Proteases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2 , Especificidade por Substrato , Ubiquitinas/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
16.
bioRxiv ; 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32511411

RESUMO

In December 2019, the first cases of a novel coronavirus infection causing COVID-19 were diagnosed in Wuhan, China. Viral Papain-Like cysteine protease (PLpro, NSP3) is essential for SARS-CoV-2 replication and represents a promising target for the development of antiviral drugs. Here, we used a combinatorial substrate library containing natural and a wide variety of nonproteinogenic amino acids and performed comprehensive activity profiling of SARS-CoV-2-PLpro. On the scaffold of best hits from positional scanning we designed optimal fluorogenic substrates and irreversible inhibitors with a high degree of selectivity for SARS PLpro variants versus other proteases. We determined crystal structures of two of these inhibitors (VIR250 and VIR251) in complex with SARS-CoV-2-PLpro which reveals their inhibitory mechanisms and provides a structural basis for the observed substrate specificity profiles. Lastly, we demonstrate that SARS-CoV-2-PLpro harbors deISGylating activities similar to SARS-CoV-1-PLpro but its ability to hydrolyze K48-linked Ub chains is diminished, which our sequence and structure analysis provides a basis for. Altogether this work has revealed the molecular rules governing PLpro substrate specificity and provides a framework for development of inhibitors with potential therapeutic value or drug repositioning.

17.
Nat Commun ; 10(1): 3296, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341161

RESUMO

Ubiquitin (Ub) signaling requires the sequential interactions and activities of three enzymes, E1, E2, and E3. Cdc34 is an E2 that plays a key role in regulating cell cycle progression and requires unique structural elements to function. The molecular basis by which Cdc34 engages its E1 and the structural mechanisms by which its unique C-terminal extension functions in Cdc34 activity are unknown. Here, we present crystal structures of Cdc34 alone and in complex with E1, and a Cdc34~Ub thioester mimetic that represents the product of Uba1-Cdc34 Ub transthiolation. These structures reveal conformational changes in Uba1 and Cdc34 and a unique binding mode that are required for transthiolation. The Cdc34~Ub structure reveals contacts between the Cdc34 C-terminal extension and Ub that stabilize Cdc34~Ub in a closed conformation and are critical for Ub discharge. Altogether, our structural, biochemical, and cell-based studies provide insights into the molecular mechanisms by which Cdc34 function in cells.


Assuntos
Proteínas de Saccharomyces cerevisiae/química , Enzimas de Conjugação de Ubiquitina/química , Clonagem Molecular , Cristalografia por Raios X , Humanos , Domínios Proteicos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/fisiologia , Enzimas Ativadoras de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/fisiologia
18.
Proc Natl Acad Sci U S A ; 116(31): 15475-15484, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31235585

RESUMO

The ubiquitin (Ub) and Ub-like (Ubl) protein-conjugation cascade is initiated by E1 enzymes that catalyze Ub/Ubl activation through C-terminal adenylation, thioester bond formation with an E1 catalytic cysteine, and thioester bond transfer to Ub/Ubl E2 conjugating enzymes. Each of these reactions is accompanied by conformational changes of the E1 domain that contains the catalytic cysteine (Cys domain). Open conformations of the Cys domain are associated with adenylation and thioester transfer to E2s, while a closed conformation is associated with pyrophosphate release and thioester bond formation. Several structures are available for Ub E1s, but none has been reported in the open state before pyrophosphate release or in the closed state. Here, we describe the structures of Schizosaccharomyces pombe Ub E1 in these two states, captured using semisynthetic Ub probes. In the first, with a Ub-adenylate mimetic (Ub-AMSN) bound, the E1 is in an open conformation before release of pyrophosphate. In the second, with a Ub-vinylsulfonamide (Ub-AVSN) bound covalently to the catalytic cysteine, the E1 is in a closed conformation required for thioester bond formation. These structures provide further insight into Ub E1 adenylation and thioester bond formation. Conformational changes that accompany Cys-domain rotation are conserved for SUMO and Ub E1s, but changes in Ub E1 involve additional surfaces as mutational and biochemical analysis of residues within these surfaces alter Ub E1 activities.


Assuntos
Adenina/química , Ésteres/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Compostos de Sulfidrila/química , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/metabolismo , Animais , Domínio Catalítico , Sequência Conservada , Análise Mutacional de DNA , Difosfatos/metabolismo , Conformação Proteica , Ubiquitina/metabolismo
19.
Oncogene ; 38(20): 3794-3811, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30692635

RESUMO

FAM3C/Interleukin-like EMT Inducer (ILEI) is an oncogenic member of the FAM3 cytokine family and serves essential roles in both epithelial-mesenchymal transition (EMT) and breast cancer metastasis. ILEI expression levels are regulated through a non-canonical TGFß signaling pathway by 3'-UTR-mediated translational silencing at the mRNA level by hnRNP E1. TGFß stimulation or silencing of hnRNP E1 increases ILEI translation and induces an EMT program that correlates with enhanced invasion and migration. Recently, EMT has been linked to the formation of breast cancer stem cells (BCSCs) that confer both tumor cell heterogeneity as well as chemoresistant properties. Herein, we demonstrate that hnRNP E1 knockdown significantly shifts normal mammary epithelial cells to mesenchymal BCSCs in vitro and in vivo. We further validate that modulating ILEI protein levels results in the abrogation of these phenotypes, promoting further investigation into the unknown mechanism of ILEI signaling that drives tumor progression. We identify LIFR as the receptor for ILEI, which mediates signaling through STAT3 to drive both EMT and BCSC formation. Reduction of either ILEI or LIFR protein levels results in reduced tumor growth, fewer tumor initiating cells and reduced metastasis within the hnRNP E1 knock-down cell populations in vivo. These results reveal a novel ligand-receptor complex that drives the formation of BCSCs and represents a unique target for the development of metastatic breast cancer therapies.


Assuntos
Neoplasias da Mama/patologia , Citocinas/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Autorrenovação Celular , Proteínas de Ligação a DNA , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal/genética , Feminino , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos Endogâmicos NOD , Proteínas de Ligação a RNA , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA