Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 138(8): 2258-68, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23439667

RESUMO

Biomass fast pyrolysis is considered as a promising route to produce liquid for the transportation field from a renewable resource. However, the derived bio-oils are mainly oxygenated (45-50%w/w O on a wet basis) and contain almost no hydrocarbons. Therefore, upgrading is necessary to obtain a liquid with lower oxygen content and characterization of oxygenated compounds in these products is essential to assist conversion reactions. For this purpose, comprehensive two-dimensional gas chromatography (GC × GC) can be investigated. Oxygen speciation in such matrices is hampered by the large diversity of oxygenated families and the complexity of the hydrocarbon matrix. Moreover, response factors must be taken into account for oxygenate quantification as the Flame Ionisation Detector (FID) response varies when a molecule contains heteroatoms. To conclude, no distillation cuts were accessible and the analysis had to cover a large range of boiling points (30-630 °C). To take up this analytical challenge, a thorough optimization approach was developed. In fact, four GC × GC column sets were investigated to separate oxygenated compounds from the hydrocarbon matrix. Both model mixtures and the upgraded biomass flash pyrolysis oil were injected using GC × GC-FID to reach a suitable chromatographic separation. The advantages and drawbacks of each column combination for oxygen speciation in upgraded bio-oils are highlighted in this study. Among the four sets, an original polar × semi-polar column combination was selected and enabled the identification by GC × GC-ToF/MS of more than 40 compounds belonging to eight chemical families: ketones, furans, alcohols, phenols, carboxylic acids, guaiacols, anisols, and esters. For quantification purpose, the GC × GC-FID chromatogram was divided into more than 60 blobs corresponding to the previously identified analyte and hydrocarbon zones. A database associating each blob to a molecule and its specific response factor (determined by standards injection at different concentrations) was created. A detailed molecular quantification by GC × GC-FID was therefore accessible after integration of the corrected normalized areas. This paper aims to present a detail level in terms of characterization of oxygenated compounds in upgraded bio-oils which to our knowledge has never been reached so far. It is based on an original column set selection and an extremely accurate quantification procedure.


Assuntos
Biocombustíveis , Cromatografia Gasosa/métodos , Óleos Combustíveis , Ionização de Chama , Oxigênio
2.
J Chromatogr A ; 1255: 196-201, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22883159

RESUMO

This paper explains how one single stationary phase can involve two different elution orders for linear alkanes, cyclic alkanes, aromatics and phenols using comprehensive two-dimensional gas chromatography. For this purpose, a coal-derived middle distillate was injected in nonpolar×semipolar and polar×semipolar configurations implying the same second dimension stationary phase (trifluoropropyl). Results show that even if the same column is utilised as a second dimension, the group-type elution order is reversed from one combination to the other. This can be explained as follows:for the polar×semipolar combination, each fraction eluting from the first dimension contains species that differ so much in terms of boiling points, that volatility plays a key role in the second isothermal separation. This is exemplified by the separation of a phenol and demonstrated using the proportional relationship between retention times, vapour pressures and activity coefficients. Moreover, van't Hoff plots (plots of ln k vs. 1/T) demonstrated the influence of the elution temperature from the first dimension on the second dimension separation. Therefore, available choice of stationary phase's combinations is much higher considering that one single column leads to very different retentions for similar compounds. Finally, this can explain why a reverse orthogonality approach is usually proficient for the separation of polar compounds.


Assuntos
Cromatografia Gasosa/métodos , Carvão Mineral/análise , Modelos Químicos , Alcanos/análise , Alcanos/química , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos/análise , Compostos Orgânicos/química , Fenóis/análise , Fenóis/química , Termodinâmica
3.
J Chromatogr A ; 1226: 61-70, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21816399

RESUMO

Speciation of oxygenated compounds in direct coal liquefaction naphthas is essential considering their important roles in coal conversion reactions. This study attempts to characterize them as fully as possible using gas chromatographic systems. Firstly, GC-MS was deployed allowing the identification of a few ketones, alcohols, and phenols. This conventional analysis was complemented by the application of GC-GC-FID aiming to overcome the coelutions highlighted when using one-dimensional gas chromatography. Heart-cutting and comprehensive two-dimensional gas chromatography were used and the comprehensive system led to better performances as expected considering the complexity of the matrix. In fact, it allowed the identification of more than a hundred of oxygenated compounds belonging to five chemical families: alcohols, ketones, furans, acids and phenols. Average response factors of each of these families were determined by GC×GC-FID using calibration curves and vary from 1 (hydrocarbons) to 2.50 (carboxylic acids). Thanks to a breakthrough columns set involving a trifluoropropyl stationary phase, alcohols and phenols which represent around 14% of the sample were fully identified. A detailed quantification of these species was carried out for the first time in such matrices using the determined response factors. It was concluded that 90% (w/w) of the alcohols are aromatic (phenols), 5% (w/w) are cyclic and 5% (w/w) are linear. A quantification of hydrocarbon families was also achieved and shows that the matrix is mostly naphthenic (56%, w/w), but also contains aromatics (22%, w/w) and paraffins (8%, w/w). This detailed characterization leads to a better understanding of coal conversion processes and is essential to convert them into synthetic fuels.


Assuntos
Alcanos/química , Ionização de Chama/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Carvão Mineral/análise , Compostos Orgânicos/análise , Compostos Orgânicos/isolamento & purificação , Oxigênio/química
4.
Anal Chem ; 83(19): 7550-4, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21851073

RESUMO

The term "orthogonal" in comprehensive two-dimensional gas chromatography (GC × GC) has a double sided meaning as it stands for a separation resulting from the combination of two independent retention mechanisms (Giddings, J. C. J. High Resolut. Chromatogr. 1987, 10, 319) but also for a 2D separation where the components are evenly distributed over the entire 2D space. It is shown in the present study that a nonorthogonal GC × GC system associating a polar stationary phase in the first dimension (poly(ethylene glycol)) to a nonpolar one in the second dimension (poly(dimethyl siloxane)) leads to a structured chromatogram, a high peak capacity, and a great 2D space occupation. This idea is demonstrated through the characterization of oxygenated compounds in a coal-derived middle distillate. Results show a clear separation between oxygenated species and hydrocarbons which are classified into linear alkanes, cyclic alkanes, and aromatics. A breakthrough configuration combining a polar poly(ethylene glycol) first dimension and a trifluoropropyl methyl stationary phase in the second dimension enabled a unique identification and quantification of linear, cyclic, and aromatic alcohols. This configuration which could be considered as nonorthogonal still involves two different retention mechanisms: polarity and boiling point in the first dimension and electronic interactions in the second dimension. It is selective toward electronegative poles of alcohols and phenols. The contributions of these two configurations compared to a conventional orthogonal system as well as their roles for oxygenated compounds speciation are highlighted. This contribution is measured through three 2D space occupation factors. It appears through these two examples that orthogonality is intimately linked to analyte properties, and a general concept of dimensionality must be considered.


Assuntos
Cromatografia Gasosa/métodos , Álcoois/química , Alcanos/química , Dimetilpolisiloxanos/química , Fenóis/química , Polietilenoglicóis/química
5.
J Chromatogr A ; 1218(21): 3233-40, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21195413

RESUMO

Considering the global energetic context, diversifying fuels is of growing importance and many new alternatives are promising. Coal liquefaction products definitely appear among the new generation substitutes. These product's characteristics are very far from fuel specifications as they are mainly composed of naphthenes, aromatics, polycondensed naphthenic and aromatic structures and heteroatomic compounds (nitrogen and oxygen), with a very low paraffin content. Identification and quantification of oxygen-containing species in coal-derived liquids are of considerable importance to understand their behaviors in further processing. However, these species have not been characterized as fully as the predominant hydrocarbon components. Literature shows that these compounds consist mainly in alkylated phenolic and furanic structures. Therefore, comprehensive two-dimensional gas chromatography has been investigated to provide enhanced molecular characterization of these complex samples. Several different configurations involving innovative column configurations were tested. Each of them was optimized by testing different column lengths, modulation periods, and oven conditions. A comparison of the contribution of each column configuration was carried out regarding four main criteria: individual separation of oxygenates, group type separation, resolution, and space occupation. One of them enabled an outstanding separation of paraffins, naphthenes, monoaromatics, diaromatics and targeted O-compounds in a direct coal liquefaction product. It was therefore subjected to further experimentations using a time-of-flight mass spectrometer to validate the identification and unravel more than fifty oxygenated molecular structures. A group-type quantification was also established for four column arrangements and gives the distribution of paraffins, naphthenes and aromatics. It can be concluded from this study that a non-orthogonal arrangement involving a highly polar column in the first dimension was the most adapted one.


Assuntos
Cromatografia Gasosa/métodos , Carvão Mineral/análise , Compostos Orgânicos/análise , Benzofuranos/análise , Benzofuranos/química , Cromatografia Gasosa/instrumentação , Destilação , Espectrometria de Massas , Compostos Orgânicos/química , Oxirredução , Fenóis/análise , Fenóis/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA