Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Chemosphere ; 363: 142935, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053777

RESUMO

The marine chemistry of platinum group elements is poorly documented despite robust evidence of their widespread emissions and deposition around the globe. Here, we report the concentrations and discuss the geochemical behaviours of Ag, Pd and other trace and ultra-trace elements in the Estuary and Gulf of St. Lawrence (EGSL). We highlight the contrasting mixing behaviours of these elements, i.e., conservative (Cd, Re) vs. non-conservative (Ag, Pd), in samples collected during the winter and under ice-covered conditions. We ascribe the contrasting geochemical behaviour of these elements to their differential affinity for reactive surfaces carried into the estuary from the frozen watersheds. We also report an increase of the concentrations of Ag (up to 40 pmol L-1), Pd (up to 10 pmol L-1) and Pt (up to 0.4 pmol L-1) in the bottom and oxygen-depleted waters of the Gulf of St. Lawrence (GSL). A strong correlation between dissolved Pt concentrations and the stable carbon isotopic composition of the dissolved inorganic carbon (δ13C-DIC) suggests that the increased mobility of Pt may result from the aerobic mineralization of organic carbon or the oxidation of Pt-bearing organic complexes. Molar Pt/Pd ratios in the three water masses that compose the water column in the EGSL highlight a potential influence of anthropogenic sources near urban centers. The signature of continental end-members will be required to confirm the impacts of road traffic on the estuarine geochemistry of these elements.


Assuntos
Monitoramento Ambiental , Estuários , Estações do Ano , Prata , Oligoelementos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Oligoelementos/análise , Prata/química , Prata/análise , Água do Mar/química , Platina/química , Platina/análise
2.
Anal Chim Acta ; 1276: 341589, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37573093

RESUMO

Routine monitoring of inorganic arsenic in groundwater using sensitive, reliable, easy-to-use and affordable analytical methods is integral to identifying sources, and delivering appropriate remediation solutions, to the widespread global issue of arsenic pollution. Voltammetry has many advantages over other analytical techniques, but the low electroactivity of arsenic(V) requires the use of either reducing agents or relatively strong acidic conditions, which both complicate the analytical procedures, and require more complex material handling by skilled operators. Here, we present the voltammetric determination of total inorganic arsenic in conditions of near-neutral pH using a new commercially available 25 µm diameter gold microwire (called the Gold Wirebond), which is described here for the first time. The method is based on the addition of low concentrations of permanganate (10 µM MnO4-) which fulfils two roles: (1) to ensure that all inorganic arsenic is present as arsenate by chemically oxidising arsenite to arsenate and, (2) to provide a source of manganese allowing the sensitive detection of arsenate by anodic stripping voltammetry at a gold electrode. Tests were carried out in synthetic solutions of various pH (ranging from 4.7 to 9) in presence/absence of chloride. The best response was obtained in 0.25 M chloride-containing acetate buffer resulting in analytical parameters (limit of detection of 0.28 µg L-1 for 10 s deposition time, linear range up to 20 µg L-1 and a sensitivity of 63.5 nA ppb-1. s-1) better than those obtained in acidic conditions. We used this new method to measure arsenic concentrations in contrasting groundwaters: the reducing, arsenite-rich groundwaters of India (West Bengal and Bihar regions) and the oxidising, arsenate-rich groundwaters of Mexico (Guanajuato region). Very good agreement was obtained in all groundwaters with arsenic concentrations measured by inductively coupled plasma-mass spectrometry (slope = +1.029, R2 = 0.99). The voltammetric method is sensitive, faster than other voltammetric techniques for detection of arsenic (typically 10 min per sample including triplicate measurements and 2 standard additions), easier to implement than previous methods (no acidic conditions, no chemical reduction required, reproducible sensor, can be used by non-voltammetric experts) and could enable cheaper groundwater surveying campaigns with in-the-field analysis for quick data reporting, even in remote communities.

3.
Environ Monit Assess ; 195(9): 1092, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37620680

RESUMO

The input of trace elements from a small urban river (Las River, Toulon, France) located on the northern Mediterranean coast was studied during both base flow and flood events. A 2-year monitoring period of water flow and suspended particulate matter (SPM) showed a typical Mediterranean hydrological regime: a strong increase in water flow and SPM during short flood periods. During the flood event, an up to 2-fold increase in dissolved trace element (DTM) concentrations and particulate trace element content in SPM (PTM) was observed compared to the baseline discharge. The enrichment factor of elements in the SPM ranges from low or moderate for Co, Ni and Cr (1.0-4.7) to extremely high for Cd (157). However, the enrichment factors decrease from base flow to flood, indicating a dilution effect with a large yield of weathering particles with higher particle size. The most significant total trace element loading occurred during flood, ranging from 78% for As and Ni to 91% for Pb, while PTM loading during flood ranged from 35% for As to 77% for Pb. The specific dissolved fluxes during the flood are significantly higher for Pb, Cu and Zn than in the surrounding rivers, indicating specificity in the catchment (lithology). This study shows the importance of monitoring the transport of pollutants through small urban rivers and their potential impact on the coastal region, especially when they enter small and closed bays, as a receiving pool.


Assuntos
Oligoelementos , Chumbo , Rios , Monitoramento Ambiental , Material Particulado , Água
4.
Talanta ; 259: 124547, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37060721

RESUMO

Humic substances (HS) in natural waters can be determined with a new, simple and sensitive method based on their influence on the background current in a differential pulse - adsorptive cathodic stripping voltammetry. The proposed method, termed PB-HS (pulsed background - humic substances) is discussed in detail, including its application in natural samples from the Krka River estuary. The method was additionally compared with absorbance measurements as well as with the typical electrochemical HS quantification in natural waters based on HS complexation with molybdenum (Mo). A good correlation between methods was observed, with PB-HS showing slightly better sensitivity to humic compounds than classical spectrophotometry. Higher HS concentrations measured with the Mo-method may be due to the enhanced hydrophobicity reached at pH 2 that is required by the method. Advantages of the proposed PB-HS method, compared to existing voltammetric methods for HS quantification, are that it does not require any reagent addition (except buffer) and that it can be used at the natural pH of water as well as in a wide salinity range, which is crucial for its application in estuarine waters.

5.
Mar Pollut Bull ; 187: 114592, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36657339

RESUMO

Mediterranean Sea is the sixth largest area of marine litter accumulation in the world, and plastic pollution is a growing problem in its Adriatic sub-basin. The aim of the present study was to evaluate the cultivable microbiota associated with plastic litter collected by commercial fishing trawlers in the south-eastern Adriatic Sea in comparison with microbiota in seawater and sediment. Plastic litter in the sea contains an autochthonous microbiota that is different from that of the surrounding seawater and sediment. Vibrio abundance was higher on plastic litter than in surrounding seawater and sediment. All isolated Vibrio showing resistance to ampicillin and vancomycin, while resistance to other antibiotics depended on the isolated species. Overall, this study provides for the first time information on the cultivable microbiota associated with plastic litter collected by commercial fishing trawlers and provides a data base for further studies.


Assuntos
Monitoramento Ambiental , Caça , Plásticos , Poluição Ambiental , Mar Mediterrâneo , Resistência Microbiana a Medicamentos , Resíduos/análise
6.
Sci Total Environ ; 838(Pt 3): 156440, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660618

RESUMO

Atmospheric deposition (AD) of nutrients and its impact on the sea surface requires consideration of interfacial processes within the sea surface microlayer (SML), the ocean-atmosphere boundary layer of major importance for many global biogeochemical and climate-related processes. This study comprised a comprehensive dataset, including dissolved NO3-, NH4+ and PO43- in ambient aerosol particles, wet deposition and sea surface samples collected from February to July 2019 at a central Adriatic coastal site. The aerosol mean concentration of dissolved nitrogen (DIN = NO3- + NH4+) and PO43- were 48.8 ± 82.8 µmol m-3 and 0.8 ± 0.6 µmol m-3, respectively, while their total fluxes (dry + wet) ranged from 24.2 to 212.3 µmol m-2 d-1 (mean 123.2 ± 53.2 µmol m-2 d-1) and from 1.2 to 2.1 µmol m-2 d-1 (mean 1.5 ± 0.3 µmol m-2 d-1), respectively. Intensive local episodes of open biomass burning (BB) significantly increased aerosol DIN concentrations as well as DIN deposition fluxes, particularly altering the molar DIN/PO43- ratio of atmospheric samples. The DIN temporal patterns showed high variability in the SML (range 0.2-24.6 µmol L-1, mean 5.0 ± 7.1 µmol L-1) in contrast to the underlying water samples (range 0.5-4.2 µmol L-1, mean 1.9 ± 1.2 µmol L-1), with significant increases during BB periods. Variability in abundance of heterotrophic bacteria and autotrophs in the SML along with concentrations of bulk dissolved and particulate organic carbon as well as dissolved and particulate lipids and carbohydrates, gel particles and surfactants followed DIN enhancements with a two-week delay. This study showed that AD can affect the short-term scale enrichments of organic matter in the SML, especially when accompanied by BB emissions typical of the overall Mediterranean coastal environment. This could have strong implications for global air-sea exchange processes, including those of climate relevant gases, mediated by the SML.


Assuntos
Atmosfera , Água do Mar , Aerossóis/análise , Poeira , Monitoramento Ambiental , Nitrogênio/análise , Água do Mar/química
7.
Mar Pollut Bull ; 180: 113771, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35623216

RESUMO

Cadmium (Cd) is a highly toxic metal, regularly monitored uniformly for water quality across Europe, but scarcely for sediments. This study was designed to compare the kinetics of Cd remobilization and the amplitude of its transfers with different marine sediments. The results showed a highly reproducible transfer kinetics. Dissolved Cd was strongly and quickly removed from the dissolved phase (from 5 min up to 7 h). Then, the dissolved Cd concentration increased progressively to reach a maximal value after two weeks of mixing. The influence of the resuspension intensity representing light wind-induced resuspension up to dredging operations was observed after 2 weeks. The intensity of the sediment resuspension clearly impacted the amplitude of Cd remobilization, dissolved Cd ranging from a few ngL-1 to few hundreds of ngL-1, exceeding the maximal dissolved Cd concentration accepted by the European Union Water Framework Directive (WFD-2008/105 32/EC).


Assuntos
Cádmio , Poluentes Químicos da Água , Europa (Continente) , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Qualidade da Água
8.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163976

RESUMO

The effects of copper addition, from various adsorbents, on the accumulation ability and glucosinolate content of cultivated rocket were studied. Different adsorbents (zeolite NaX, egg shells, substrate, fly ash) were treated with copper(II) solution with an adsorption efficiency of 98.36, 96.67, 51.82 and 39.13%, respectively. The lowest copper content and the highest total glucosinolate content (44.37 µg/g DW and 4269.31 µg/g DW, respectively) were detected in the rocket grown in the substrate with the addition of a substrate spiked with copper(II) ions. Rocket grown in the fly ash-substrate mixture showed an increase in copper content (84.98 µg/g DW) and the lowest total glucosinolate content (2545.71 µg/g DW). On the other hand, when using the egg shells-substrate mixture, the rocket copper content increased (113.34 µg/g DW) along with the total GSLs content (3780.03 µg/g DW), indicating the influence of an adsorbent type in addition to the copper uptake. The highest copper content of 498.56 µg/g DW was detected in the rocket watered with copper(II) solution with a notable decrease in the glucosinolate content, i.e., 2699.29 µg/g DW. According to these results rocket can be considered as a copper accumulator plant.


Assuntos
Brassicaceae/metabolismo , Cobre/metabolismo , Recuperação e Remediação Ambiental/métodos , Biodegradação Ambiental/efeitos dos fármacos , Brassicaceae/química , Brassicaceae/efeitos dos fármacos , Cobre/análise , Cobre/farmacologia , Glucosinolatos/análise , Folhas de Planta/química
9.
Glob Chang Biol ; 28(7): 2341-2359, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34981609

RESUMO

Climate change-related increase in seawater temperature has become a leading cause of coral bleaching and mortality. However, corals from the northern Red Sea show high thermal tolerance and no recorded massive bleaching event. This specific region is frequently subjected to intense dust storms, coming from the surrounding arid deserts, which are expected to increase in frequency and intensity in the future. The aerial dust deposition supplies essential bioelements to the water column. Here, we investigated the effect of dust deposition on the physiology of a Red Sea coral, Stylophora pistillata. We measured the modifications in coral and Symbiodiniaceae metallome (cellular metal content), as well as the changes in photosynthesis and oxidative stress status of colonies exposed during few weeks to dust deposition. Our results show that 1 mg L-1 of dust supplied nanomolar amounts of nitrate and other essential bioelements, such as iron, manganese, zinc and copper, rapidly assimilated by the symbionts. At 25°C, metal bioaccumulation enhanced the chlorophyll concentration and photosynthesis of dust-exposed corals compared to control corals. These results suggest that primary production was limited by metal availability in seawater. A 5°C increase in seawater temperature enhanced iron assimilation in both control and dust-enriched corals. Temperature rise increased the photosynthesis of control corals only, dust-exposed ones having already reached maximal photosynthesis rates at 25°C. Finally, we observed a combined effect of temperature and bioelement concentration on the assimilation of molybdenum, cadmium, manganese and copper, which were in higher concentrations in symbionts of dust-exposed corals maintained at 30°C. All together these observations highlight the importance of dust deposition in the supply of essential bioelements, such as iron, to corals and its role in sustaining coral productivity in Red Sea reefs.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Cobre , Recifes de Corais , Poeira , Oceano Índico , Ferro , Manganês , Metais , Simbiose
11.
Arch Environ Contam Toxicol ; 81(4): 564-573, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34357425

RESUMO

The abundance and distribution of dissolved Re (DRe) were determined in the freshwater part of the Krka River (Croatia), which drains a karst landscape, and in the salinity gradient of its highly stratified estuary. Due to the low DRe concentration, a batch procedure consisting of a pre-concentration step using an anion exchange resin (Dowex) and analysis of DRe in 8 M HNO3 eluate using high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS) was applied. Due to potentially inconsistent recoveries, which ranged from 60 to 87%, quantification was performed using the isotope dilution technique (ID). DRe concentrations in the Krka River increased downstream, from 6.2 pM at the spring site to 11.9 pM upstream of the estuary region. Weathering of the surrounding carbonate lithology is assumed to be the source of the natural Re. Two specific anomalies were registered: a strong increase in DRe concentration due to anthropogenic input near the town of Knin (27.5 pM) and a decrease at a downstream site caused by subsurface input of freshwater from the Zrmanja River, resulting in a relatively low DRe concentration (8.5 pM). In the estuarine region, a near-conservative behavior of DRe was found in the salinity gradient of the upper surface layer, with DRe concentrations ranging from 18 to 38 pM. Anthropogenic input was suspected within the estuarine segment near the urban area, causing a small positive deviation from the conservative line. In the bottom seawater layer, a minor decrease in DRe concentration in the most upstream estuarine regions was apparent, implying weak scavenging of Re.


Assuntos
Rênio , Poluentes Químicos da Água , Croácia , Monitoramento Ambiental , Estuários , Salinidade , Poluentes Químicos da Água/análise
12.
Molecules ; 26(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922063

RESUMO

An improved methodology was developed for V redox speciation in estuarine waters using a hyphenated technique consisting of ion chromatograph (IC) with an anion exchange column and a high-resolution inductively coupled plasma mass spectrometer (HR ICP-MS). This approach enables the direct determination of V(V), whereas reduced species (mainly V(IV)) are calculated by subtracting V(V) concentrations from the measured total V concentration. Based on the "on-column" V(V) chelation mechanism by EDTA, with the eluent composed of 40 mmol L-1 ammonium bicarbonate, 40 mmol L-1 ammonium sulphate, 8 mmol L-1 ethylenediaminetetraacetic acid and 3% acetonitrile, the method was successfully used for analyses of V redox speciation in samples taken in the vertical salinity gradient of the highly stratified Krka River estuary. Due to the matrix effects causing different sensitivities, a standard addition method was used for V(V) quantification purposes. The limit of detection (LOD) was also found to be matrix related: 101.68 ng L-1 in the seawater and 30.56 µg L-1 in the freshwater. Performed stability tests showed that V redox speciation is preserved at least 7 days in un-treated samples, possibly due to the stabilization of V-reduced species with natural organic matter (NOM). The dominant V form in the analysed samples was V(V) with the reduced V(IV) accounting for up to 26% of the total dissolved pool. The concentration of V(IV) was found to correlate negatively with the oxygen concentration. Significant removal of dissolved V was detected in oxygen depleted zones possibly related to the particle scavenging.


Assuntos
Cromatografia por Troca Iônica , Estuários , Espectrometria de Massas , Oxirredução , Água do Mar/química , Vanádio/metabolismo , Geografia
13.
Talanta ; 226: 122170, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676712

RESUMO

Copper (Cu) is a bio-essential trace element that is of concerns due to its potential toxicity at concentrations commonly encountered in coastal waters. Here, we revisit the applicability of Cu(II) ion selective electrode (Cu-ISE) based on a jalpaite membrane for the measurement of Cufree in seawater. At high total Cu concentration (>0.1 mM), (near)Nernstian slope was obtained and determination of Cufree down to fM levels was possible. However, this slope decreases with decreasing total Cu concentration (e.g. 7 mV/decade at 15 nM total Cu) making the use of a common single calibration approach unreliable. To solve this problem, we carried out several calibrations at different levels of total Cu (15 nM - 1 mM) and ethylenediamine (EN: 5 µM - 15 mM) and fitted the calibration parameters (slope and intercept) as a function of total Cu using the Gompertz function (a meta-calibration approach). The derived empirical equations allowed the determination of Cufree at any total Cu concentration above 20 nM (determination of Cufree at lower total Cu levels is prevented by the dissolution of the electrode). We successfully tested this meta-calibration approach in UV digested seawater in presence of a synthetic ligand (EN), isolated natural organic matter (humic acid, HA) and in a natural estuarine sample. In each case, our meta-calibration approach provided a good agreement with modeled speciation data (Visual MINTEQ), while standard single approach failed. We provide here a new method for the direct determination of the free Cu ion concentration in seawater at levels relevant for coastal waters.


Assuntos
Cobre , Eletrodos Seletivos de Íons , Calibragem , Substâncias Húmicas , Água do Mar
14.
Front Microbiol ; 12: 589948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679628

RESUMO

Trace metal (TM) contamination in marine coastal areas is a worldwide threat for aquatic communities. However, little is known about the influence of a multi-chemical contamination on both marine biofilm communities' structure and functioning. To determine how TM contamination potentially impacted microbial biofilms' structure and their functions, polycarbonate (PC) plates were immerged in both surface and bottom of the seawater column, at five sites, along strong TM contamination gradients, in Toulon Bay. The PC plates were incubated during 4 weeks to enable colonization by biofilm-forming microorganisms on artificial surfaces. Biofilms from the PC plates, as well as surrounding seawaters, were collected and analyzed by 16S rRNA amplicon gene sequencing to describe prokaryotic community diversity, structure and functions, and to determine the relationships between bacterioplankton and biofilm communities. Our results showed that prokaryotic biofilm structure was not significantly affected by the measured environmental variables, while the functional profiles of biofilms were significantly impacted by Cu, Mn, Zn, and salinity. Biofilms from the contaminated sites were dominated by tolerant taxa to contaminants and specialized hydrocarbon-degrading microorganisms. Functions related to major xenobiotics biodegradation and metabolism, such as methane metabolism, degradation of aromatic compounds, and benzoate degradation, as well as functions involved in quorum sensing signaling, extracellular polymeric substances (EPS) matrix, and biofilm formation were significantly over-represented in the contaminated site relative to the uncontaminated one. Taken together, our results suggest that biofilms may be able to survive to strong multi-chemical contamination because of the presence of tolerant taxa in biofilms, as well as the functional responses of biofilm communities. Moreover, biofilm communities exhibited significant variations of structure and functional profiles along the seawater column, potentially explained by the contribution of taxa from surrounding sediments. Finally, we found that both structure and functions were significantly distinct between the biofilm and bacterioplankton, highlighting major differences between the both lifestyles, and the divergence of their responses facing to a multi-chemical contamination.

15.
Mar Pollut Bull ; 156: 111196, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32510358

RESUMO

A long-term monitoring during dredging and non-dredging periods was performed. Total and dissolved Cu and Pb concentrations, DGT-labile Pb, ultraphytoplankton abundance and structure were monitored at four sites: dredging site, dumping site (inside/outside of a geotextile bag) and reference site. During the reference period (non-dredging), an increasing contamination in Pb, Cu and a progressive shift from Synechococcus to photosynthetic picoeukaryotes dominance was observed from reference to dumping site. Pb concentrations were significantly higher during dredging period, pointing out sediment resuspension as Pb major source of contamination. Unlike Pb, Cu concentrations were not statistically different during the two periods. Dredging period did not impact on ultraphytoplankton abundance and structure but influence heterotrophic prokaryotes abundance. Sediment resuspension is therefore a major driver of chemical and biological qualities in Toulon Bay. Furthermore, although the geotextile bag reduces particulate transport of the dredged sediment, the transport in the dissolved phase remains a major problem.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água/análise , Baías , Monitoramento Ambiental , França , Chumbo , Mar Mediterrâneo
16.
Mar Pollut Bull ; 155: 111066, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32469754

RESUMO

St Georges Bay of Lebanon's coast is an open bay to the Mediterranean Sea. It is exposed to numerous anthropogenic activities such as industrial effluent, untreated wastewater discharge and maritime activities resulting in increasing chemical contamination, especially with trace metals. Contamination with trace metals (Cu, Cd, Co, Pb, As, Ag and Hg) and the influence of early diagenesis on their distribution were studied on both sediments and waters. For this purpose, sediment cores were collected, then treated under inert atmosphere to retrieve pore waters and solid fraction. The area appears to be seriously impacted by the materials transported by the Beirut River and/or by direct inputs, and recent land reclamation using dumpsite material. The sediments showed a significant level of contamination. Element mobility was studied by selective extraction on sediments. The mobility of trace elements from solid fraction to pore waters is controlled by the Fe/Mn cycle and organic matter.


Assuntos
Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Sedimentos Geológicos , Líbano , Mar Mediterrâneo
17.
Sci Total Environ ; 721: 137784, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172124

RESUMO

Understanding the potential bioavailability of trace metals (TM) in marine systems is of prime importance to implement adapted regulations and efficiently protect our coastal and estuarine waters. In this study Diffusive Gradients in Thin films (DGT) technique with two different pore size was used to evaluate the potentially bioavailable fractions (DGT-labile) of Cd, Co, Cu, Ni, Pb and Zn at various depths of a highly stratified estuary (the Krka River estuary, Croatia) both in winter and summer. DGT-labile concentrations were compared to (1) total dissolved concentrations, (2) concentrations of labile species measured by anodic stripping voltammetry (ASV-labile) for Cu and (3) concentrations derived by chemical speciation modelling. High correlation between dissolved and DGT-labile concentrations was found for all metals, except for Zn where contamination problems prevented reliable conclusions. Percentages of DGT-labile fractions over total dissolved concentrations were (AVG ±â€¯SD): 92 ±â€¯3%, 64 ±â€¯2%, 23 ±â€¯5%, 61 ±â€¯3% and 57 ±â€¯6% for Cd, Pb, Cu, Ni and Co, respectively. No significant difference was found between trace metal concentrations measured with an open pore and restricted pore devices, implying the predominance of kinetically labile metal complexes smaller than 1 nm. For Cu, ASV-labile and DGT labile concentrations were highly correlated (0.97) with ASV-labile concentration being around 35% lower than that of the DGT-labile. Modelling of chemical speciation reliably predicted dynamic (free, inorganic and part of organic complexes) concentration of Cd, whereas dynamic concentrations of Cu and Pb were underestimated by 32% and 65%, respectively. In view of the relative simplicity of DGT devices, they are well suited for the monitoring effort of coastal waters, informing on potentially bioavailable concentrations of TM and thereby, helping to achieve good environmental status of coastal waters, as stipulated within the EU Water Framework Directive.

18.
Sci Total Environ ; 698: 134120, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505358

RESUMO

Contaminated sediments could act as a source of contamination to the surrounding environments by several processes (e.g., diffusive flux, sediment resuspension). This study aimed at highlighting the mechanisms of copper and lead mobilization from resuspended particles to the aqueous phase using laboratory experiments and a kinetic model. Three sediments, differed by their compositions and metal partition from Toulon Bay (SE France) were used. In addition, three solid/liquid ratios (0.1, 1 and 10 g L-1) allowed simulating at best natural and anthropogenic scenarios (e.g., storm, nautical traffic, dredging). We monitored metal concentrations, physicochemical parameters (pH, Eh, [O2]) and organic matter concentration along with their optical properties. Experimental results showed successive reactions over short and long terms (hour and day scale, respectively) that controlled Cu and Pb exchanges between particles and the aqueous phase over 4 weeks. The quick Cu removal was attributed to the implications of newly formed oxides while the long-term Cu release in the dissolved fraction from the more refractory solid pool is more likely related to organic complexation. In fact, we observed a transformation of the dissolved organic matter: an increase in molecular weight and in humic fluorescence properties. However, the Pb removal toward the end of the experiment could be explained by a migration toward the exchangeable sites of higher energy, which could correspond to the particulate organic matter or a combination with organic-coating carrier phases. Both kinetic rate and system response times (τi) were coherent despite the variability of parameters intrinsic to sediments (e.g., sediment composition and initial metal repartition) but also extrinsic parameters (solid/liquid ratios). Such a coherence would imply the universality of the obtained constants to be used in a more predictive approach to assess the potential of metal mobility using metal repartition in contaminated sediments when combined with hydrological and sedimentological models.

19.
Sci Total Environ ; 707: 135949, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31863987

RESUMO

Sterilization techniques are largely employed to distinguish biotic and abiotic processes in biogeochemical studies as they inhibit microbial activity. Since one century, chemical sterilizers, supposed to preserve original environmental samples, have taken precedence over physical sterilization techniques considered too destructive. Sodium azide (NaN3) is nowadays the most commonly used inorganic chemical sterilizer. It is sufficiently purified to study trace metals, as well. Nevertheless, its (in)activity in physico-chemical processes was never ascertained. Through the investigation of sediment resuspension in seawater, the present work unequivocally demonstrated that NaN3 can impact carbon and trace metals' transfers by altering the redox balance and pH. Unlike decades of blind practice, NaN3 should be used with great care to track abiotic processes from organic matter rich and reductive matrices.

20.
Environ Sci Pollut Res Int ; 27(7): 7628-7638, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31885069

RESUMO

Coastal and estuarine sediments play an important role in the biogeochemical cycle of mercury (Hg) in the aquatic environment. When contaminated, sediments can act as a potential source of Hg and may pose a long-term risk to aquatic biota. The aim of this research was to assess spatial and historical distribution of Hg in the sediments of the Krka River estuary, an environment that so far has been regarded as relatively unpolluted. To achieve this goal, 40 surface sediment samples and 7 sediment cores were collected along the entire estuary. Hg concentrations in the surface and deep sediments of the Krka River estuary were found in a broad range 0.042-57.8 mg kg-1, demonstrating significant spatial and temporal differences in Hg input to the estuarine sediments. Two distinct areas were distinguished; upper estuary where the Hg content was comparable to other unpolluted Adriatic sediments, and the lower estuary where sediment profiles reflected the history of anthropogenic Hg input associated with the city of Sibenik. The vertical Hg profile from the most affected area of the estuary, combined with 210Pb and 137Cs dating, demonstrated that a significant increase of Hg input started in late 1940s/early 1950s, mainly related to shipyard activities. This study provided more insight on the Hg concentration in the Krka River estuary, demonstrating that the high values obtained, although localized, were comparable to the ones found in some of the most contaminated sites in the Mediterranean.


Assuntos
Monitoramento Ambiental , Estuários , Mercúrio/análise , Rios , Poluentes Químicos da Água/análise , Croácia , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA