Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Phys Med ; 124: 103426, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986263

RESUMO

PURPOSE: To analyze the image quality of a novel, state-of-the art platform for CBCT image-guided spine surgery, focusing particularly on the dose-effectiveness compared with conventional CT (the gold standard for postoperative assessment). METHODS: The ClarifEye platform (Philips Healthcare) with integrated augmented-reality surgical navigation, has been compared with a GE Revolution CT (GE Healthcare). The 3D spatial resolution (TTF) and noise (NPS) were evaluated considering relevant feature contrasts (200-900 HU) and background noise for differently sized patients (200-300 mm water-equivalent diameter). These measures were used to determine the noise equivalent quanta (NEQ) and observer model detectability. RESULTS: The CBCT system exhibited a linear response with 50% TTF at 5.7 cycles/cm (10% TTF at 9.2 cycles/cm), and the axial noise power peaking at about 3.6 cycles/cm (average frequency of 4.1 cycles/cm). The noise magnitude and texture differed markedly compared to iteratively reconstructed CT images (GE ASiR-V). The CBCT system had 26% lower detectability for a high-frequency task (related to edge detection) compared with CT images reconstructed using the Bone kernel combined with ASiR-V 50%. Likewise, it had 18% lower detectability for low- and mid-frequency tasks compared with CT images reconstructed using the Standard kernel. This difference translates to 50%-80% higher CBCT imaging doses required to match the CT image quality. CONCLUSIONS: The ClarifEye platform demonstrates intraoperative CBCT-imaging capabilities that under certain circumstances are comparable with conventional CT. However, due to limited dose-effectiveness, a trade-off between timeliness and radiation exposure must be considered if end-of-procedure CBCT is to replace postoperative CT.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Coluna Vertebral , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador/métodos , Período Intraoperatório , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Razão Sinal-Ruído , Doses de Radiação , Controle de Qualidade , Imagens de Fantasmas
2.
Acta Neurochir (Wien) ; 165(9): 2343-2358, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37584860

RESUMO

BACKGROUND: Hybrid operating rooms (hybrid-ORs) combine the functionalities of a conventional surgical theater with the advanced imaging technologies of a radiological suite. Hybrid-ORs are usually equipped with CBCT devices providing both 2D and 3D imaging capability that can be used for both interventional radiology and image guided surgical applications. Across all fields of surgery, the use of hybrid-ORs is gaining in traction, and neurosurgery is no exception. We hence aimed to comprehensively review the use of hybrid-ORs, the associated advantages, and disadvantages specific to the field of neurosurgery. MATERIALS AND METHODS: Electronic databases were searched for all studies on hybrid-ORs from inception to May 2022. Findings of matching studies were pooled to strengthen the current body of evidence. RESULTS: Seventy-four studies were included in this review. Hybrid-ORs were mainly used in endovascular surgery (n = 41) and spine surgery (n = 33). Navigation systems were the most common additional technology employed along with the CBCT systems in the hybrid-ORs. Reported advantages of hybrid-ORs included immediate assessment of outcomes, reduced surgical revision rate, and the ability to perform combined open and endovascular procedures, among others. Concerns about increased radiation exposure and procedural time were some of the limitations mentioned. CONCLUSION: In the field of neurosurgery, the use of hybrid-ORs for different applications is increasing. Hybrid-ORs provide preprocedure, intraprocedure, and end-of-procedure imaging capabilities, thereby increasing surgical precision, and reducing the need for postoperative imaging and correction surgeries. Despite these advantages, radiation exposure to patient and staff is an important concern.


Assuntos
Procedimentos Endovasculares , Neurocirurgia , Exposição à Radiação , Humanos , Salas Cirúrgicas/métodos , Procedimentos Neurocirúrgicos/métodos
3.
J Neurointerv Surg ; 14(11): 1139-1144, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34750111

RESUMO

OBJECTIVES: To reduce occupational radiation exposure in a hybrid operating room (OR) used for three-dimensional (3D) image guided spine procedures. The effects of staff positioning, different X-ray imaging systems, and freestanding radiation protection shields (RPSs) were considered. METHODS: An anthropomorphic phantom was imaged with a robotic ceiling mounted hybrid OR C-arm cone beam CT (hCBCT), a mobile O-arm CBCT (oCBCT), and a mobile two-dimensional C-arm fluoroscopy system. The resulting scatter doses were measured at different positions in the hybrid OR using active personal dosimeters and an ionization chamber. Two types of RPSs were evaluated. RESULTS: Using the hCBCT system instead of the oCBCT system reduced the occupational radiation dose on average by 22%. At 200 cm from the phantom, scatter doses from the hCBCT were 27% lower compared with the oCBCT. One rotational acquisition with hCBCT or oCBCT corresponded to 12 or 16 min of fluoroscopy with the C-arm, respectively. The scatter dose decreased by more than 90% behind an RPS. However, the protection was slightly less effective at 60 cm behind the RPS, due to tertiary scatter from the surroundings. CONCLUSIONS: For 3D image guided spine procedures in the hybrid OR, occupational radiation exposure is lowered by using hCBCT rather than oCBCT. Radiation exposure can also be decreased by optimal staff positioning in the OR, considering distance to the source and positioning relative to the walls, ceiling, and RPS. In this setting and workflow, staff can use RPSs instead of heavy aprons during intraoperative CBCT imaging, to achieve effective whole body dose reduction with improved comfort.


Assuntos
Exposição Ocupacional , Exposição à Radiação , Lesões por Radiação , Cirurgia Assistida por Computador , Fluoroscopia/efeitos adversos , Fluoroscopia/métodos , Humanos , Imageamento Tridimensional/métodos , Exposição Ocupacional/prevenção & controle , Salas Cirúrgicas , Imagens de Fantasmas , Doses de Radiação , Exposição à Radiação/prevenção & controle , Lesões por Radiação/prevenção & controle , Tomografia Computadorizada por Raios X , Raios X
4.
Med Phys ; 48(11): 6740-6754, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34622973

RESUMO

PURPOSE: Conventional cone-beam computed tomography CT (CBCT) provides limited discrimination between low-contrast tissues. Furthermore, it is limited to full-spectrum energy integration. A dual-energy CBCT system could be used to separate photon energy spectra with the potential to increase the visibility of clinically relevant features and acquire additional information relevant in a multitude of clinical imaging applications. In this work, the performance of a novel dual-layer dual-energy CBCT (DL-DE-CBCT) C-arm system is characterized for the first time. METHODS: A prototype dual-layer detector was fitted into a commercial interventional C-arm CBCT system to enable DL-DE-CBCT acquisitions. DL-DE reconstructions were derived from material-decomposed Compton scatter and photoelectric base functions. The modulation transfer function (MTF) of the prototype DL-DE-CBCT was compared to that of a commercial CBCT. Noise and uniformity characteristics were evaluated using a cylindrical water phantom. Effective atomic numbers and electron densities were estimated in clinically relevant tissue substitutes. Iodine quantification was performed (for 0.5-15 mg/ml concentrations) and virtual noncontrast (VNC) images were evaluated. Finally, contrast-to-noise ratios (CNR) and CT number accuracies were estimated. RESULTS: The prototype and commercial CBCT showed similar spatial resolution, with a mean 10% MTF of 5.98 cycles/cm and 6.28 cycles/cm, respectively, using a commercial standard reconstruction. The lowest noise was seen in the 80 keV virtual monoenergetic images (VMI) (7.40 HU) and the most uniform images were seen at VMI 60 keV (4.74 HU) or VMI 80 keV (1.98 HU), depending on the uniformity measure used. For all the tissue substitutes measured, the mean accuracy in effective atomic number was 98.2% (SD 1.2%) and the mean accuracy in electron density was 100.3% (SD 0.9%). Iodine quantification images showed a mean difference of -0.1 (SD 0.5) mg/ml compared to the true iodine concentration for all blood and iodine-containing objects. For VNC images, all blood substitutes containing iodine averaged a CT number of 43.2 HU, whereas a blood-only substitute measured 44.8 HU. All water-containing iodine substitutes measured a mean CT number of 2.6 in the VNC images. A noise-suppressed dataset showed a CNR peak at VMI 40 keV and low at VMI 120 keV. In the same dataset without noise suppression applied, a peak in CNR was obtained at VMI 70 keV and a low at VMI 120 keV. The estimated CT numbers of various clinically relevant objects were generally very close to the calculated CT number. CONCLUSIONS: The performance of a prototype dual-layer dual-energy C-arm CBCT system was characterized. Spatial resolution and noise were comparable with a commercially available C-arm CBCT system, while offering dual-energy capability. Iodine quantifications, effective atomic numbers, and electron densities were in good agreement with expected values, indicating that the system can be used to reliably evaluate the material composition of clinically relevant tissues. The VNC and monoenergetic images indicate a consistent ability to separate clinically relevant tissues. The results presented indicate that the system could find utility in diagnostic, interventional, and radiotherapy planning settings.


Assuntos
Iodo , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Tomografia Computadorizada de Feixe Cônico , Imagens de Fantasmas , Estudos Retrospectivos , Razão Sinal-Ruído
5.
Med Phys ; 48(7): 3630-3637, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33993511

RESUMO

PURPOSE: SpekPy is a free toolkit for modeling x-ray tube spectra with the Python programming language. In this article, the advances in version 2.0 (v2) of the software are described, including additional target materials and more accurate modeling of the heel effect. Use of the toolkit is also demonstrated. METHODS: The predictions of SpekPy are illustrated in comparison to experimentally determined spectra: three radiation quality reference (RQR) series tungsten spectra and one mammography spectrum with a molybdenum target. The capability of the software to correctly model changes in tube output with tube potential is also assessed, using the example of a GE RevolutionTM CT scanner (GE Healthcare, Waukesha, WI, USA) and specifications in the system's Technical Reference Manual. Furthermore, we note that there are several physics models available in SpekPy. These are compared on and off the central axis, to illustrate the differences. RESULTS: SpekPy agrees closely with the experimental spectra over a wide range of tube potentials, both visually and in terms of first and second half-value layers (HVLs) (within 2% here). The CT scanner spectrum output (normalized to 120 kV tube potential) agreed within 4% over the range of 70 to 140 kV. The default physics model (casim) is adequate in most situations. The advanced option (kqp) should be used if high accuracy is desired for modeling the anode heel effect, as it fully includes the effects of bremsstrahlung anisotropy. CONCLUSIONS: SpekPy v2 can reliably predict on- and off-axis spectra for tungsten and molybdenum targets. SpekPy's open-source MIT license allows users the freedom to incorporate this powerful toolkit into their own projects.


Assuntos
Mamografia , Software , Tomógrafos Computadorizados , Tungstênio , Raios X
6.
Med Phys ; 47(10): 4763-4774, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32609887

RESUMO

PURPOSE: To develop an analytical model for bremsstrahlung production in a thick x-ray target (i.e., the x-ray tube anode) that takes into account the intrinsic bremsstrahlung angular distribution. METHODS: X-ray spectrum models developed from theoretical principles have traditionally treated the angular distribution of the bremsstrahlung production as spherically uniform. This assumption stems from the rationale that electrons promptly attain a diffuse directional distribution in an x-ray target due to multiple scattering, thereby effectively masking the intrinsic bremsstrahlung angular distribution. In this work, a model that explicitly accounts for the angular distribution of the bremsstrahlung production is presented. The model combines Monte Carlo-calculated depth, energy, and angular distributions of electrons penetrating the x-ray target, and incorporates theoretical results for the differential bremsstrahlung cross section. The effects of using different simplified model assumptions for the electron penetration and the intrinsic bremsstrahlung angular distribution are analyzed for tungsten and molybdenum targets in the energy range 20-300 keV. RESULTS: Typical assumptions of previous models are shown to introduce errors in calculated spectra. Particularly, it is shown that predictions of fluence and air kerma free-in-air can be overestimated by 15-30% (2-3% in aluminum half-value layer thickness) for clinically relevant beam qualities. The present model is able to reproduce comprehensive Monte Carlo calculations of the bremsstrahlung production generally to within 1%. CONCLUSIONS: The bremsstrahlung model developed in this work is an improvement over previous models in that the main features of the electron penetration and the resulting bremsstrahlung are considered in detail. The model can be used for more accurate predictions of the energy and angular distribution of x rays emitted from an x-ray tube.


Assuntos
Elétrons , Método de Monte Carlo , Radiografia , Raios X
7.
Med Phys ; 47(9): 4005-4019, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32593216

RESUMO

PURPOSE: To present and validate a complete x-ray emission model (bremsstrahlung and characteristic x-ray emission) for the energy range 20-300 kV. METHODS: An analytical x-ray spectrum model that combines the bremsstrahlung emission model developed in Part I with a previously developed characteristic x-ray emission model is validated by comparison with Monte Carlo calculations, published measured spectra, and models developed by other authors. Furthermore, the assumptions and limitations of previous spectrum models are summarized, and their predictions are compared with results obtained by Monte Carlo simulations of x rays emitted from tungsten and molybdenum targets. RESULTS: The model is able to reproduce narrow-beam Monte Carlo calculations to within 0.5% in terms of the first and second aluminum half-value layer thickness (HVL). Compared with measured spectra, the difference in HVL is < 2% for typical diagnostic and therapeutic beam qualities available at primary standard laboratories. Compared with previous spectrum models, the present model performs especially well for low kilovoltage x-ray beams (below 50 kV), and is reliable for a wider range of take-off angles, that is, the angle between the target surface and the direction of emission. The difference in model and Monte Carlo predictions of the energy-fluence weighted air kerma (i.e., the photon energy absorption in air) is < 0.5% using the present model, while previous spectrum models can differ by more than 10%. CONCLUSIONS: The x-ray emission model developed in this work has been validated against Monte Carlo calculations and measured results. The model provides an efficient alternative to comprehensive Monte Carlo simulations and is an improvement over previous models. The model can be used to predict both central- and off-axis spectra, as well as off-axis effects such as the (anode) heel effect.


Assuntos
Fótons , Método de Monte Carlo , Radiografia , Raios X
8.
Phys Med ; 75: 44-54, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32512239

RESUMO

PURPOSE: To validate the SpekPy software toolkit that has been developed to estimate the spectra emitted from tungsten anode X-ray tubes. The model underlying the toolkit introduces improvements upon a well-known semi-empirical model of X-ray emission. MATERIALS AND METHODS: Using the same theoretical framework as the widely-used SpekCalc software, new electron penetration data was simulated using the Monte Carlo (MC) method, alternative bremsstrahlung cross-sections were applied, L-line characteristic emissions were included, and improvements to numerical methods implemented. The SpekPy toolkit was developed with the Python programming language. The toolkit was validated against other popular X-ray spectrum models (50 to 120 kVp), X-ray spectra estimated with MC (30 to 150 kVp) as well as reference half value layers (HVL) associated with numerous radiation qualities from standard laboratories (20 to 300 kVp). RESULTS: The toolkit can be used to estimate X-ray spectra that agree with other popular X-ray spectrum models for typical configurations in diagnostic radiology as well as with MC spectra over a wider range of conditions. The improvements over SpekCalc are most evident at lower incident electron energies for lightly and moderately filtered radiation qualities. Using the toolkit, estimations of the HVL over a large range of standard radiation qualities closely match reference values. CONCLUSIONS: A toolkit to estimate X-ray spectra has been developed and extensively validated for central-axis spectra. This toolkit can provide those working in Medical Physics and beyond with a powerful and user-friendly way of estimating spectra from X-ray tubes.

9.
Spine (Phila Pa 1976) ; 45(1): E45-E53, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31415457

RESUMO

STUDY DESIGN: Prospective observational study. OBJECTIVE: To assess staff and patient radiation exposure during augmented reality surgical navigation in spine surgery. SUMMARY OF BACKGROUND DATA: Surgical navigation in combination with intraoperative three-dimensional imaging has been shown to significantly increase the clinical accuracy of pedicle screw placement. Although this technique may increase the total radiation exposure compared with fluoroscopy, the occupational exposure can be minimized, as navigation is radiation free and staff can be positioned behind protective shielding during three-dimensional imaging. The patient radiation exposure during treatment and verification of pedicle screw positions can also be reduced. METHODS: Twenty patients undergoing spine surgery with pedicle screw placement were included in the study. The staff radiation exposure was measured using real-time active personnel dosimeters and was further compared with measurements using a reference dosimeter attached to the C-arm (i.e., a worst-case staff exposure situation). The patient radiation exposures were recorded, and effective doses (ED) were determined. RESULTS: The average staff exposure per procedure was 0.21 ±â€Š0.06 µSv. The average staff-to-reference dose ratio per procedure was 0.05% and decreased to less than 0.01% after a few procedures had been performed. The average patient ED was 15.8 ±â€Š1.8 mSv which mainly correlated with the number of vertebrae treated and the number of cone-beam computed tomography acquisitions performed. A low-dose protocol used for the final 10 procedures yielded a 32% ED reduction per spinal level treated. CONCLUSION: This study demonstrated significantly lower occupational doses compared with values reported in the literature. Real-time active personnel dosimeters contributed to a fast optimization and adoption of protective measures throughout the study. Even though our data include both cone-beam computed tomography for navigation planning and intraoperative screw placement verification, we find low patient radiation exposure levels compared with published data. LEVEL OF EVIDENCE: 3.


Assuntos
Realidade Aumentada , Exposição à Radiação/estatística & dados numéricos , Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador/métodos , Adulto , Tomografia Computadorizada de Feixe Cônico/métodos , Feminino , Fluoroscopia/métodos , Humanos , Imageamento Tridimensional/métodos , Masculino , Exposição Ocupacional , Parafusos Pediculares , Estudos Prospectivos , Doses de Radiação
10.
Phys Med ; 57: 17-24, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30738522

RESUMO

PURPOSE: To estimate effective dose (E), equivalent organ doses (HT) and associated conversion coefficients (CCE:KAP = E/KAP, CCHT:KAP = HT/KAP; KAP = Kerma-area product) in paediatric cardiac interventions, using detailed exposure data from radiation dose structured reports (RDSR). These "RDSR dose estimations" have been compared with estimations performed using the approach currently implemented in the clinic that is based on a simplified assumptions method (SAM). METHODS: The Monte Carlo system PCXMC, incorporated into a previously developed framework, was used to calculate E and HT for 202 children. The calculations were performed with input values from RDSR, and also using simplified assumptions, including fixed nominal values for the focus-skin distance, collimated beam size, irradiation geometry and patient size (age, weight and height). RESULTS: Mean HT to critical organs were: 5-25 mSv (lungs), 5-8 mSv (breasts) and 5-22 mSv (heart), with the lower and upper end of the doses associated with the neonatal and 15 years group, respectively. The associated mean CCHT:KAP for the different age groups were: 9.4-1.6 mSv/Gycm2 (lungs), 8.9-0.54 mSv/Gycm2 (breasts) and 9.3-1.4 mSv/Gycm2 (heart). CONCLUSIONS: The extension of the concept of a conversion coefficient for HT is introduced and CCHT:KAP values for paediatric cardiac interventions divided in age groups are presented. This method of linking the KAP to HT is intended for use in epidemiological/cohort studies or in clinics that do not have access to RDSR. Further, the population-averaged conversion coefficients for the critical organs estimated from RDSR, displayed no statistically significant difference compared with the SAM approach.


Assuntos
Coração/efeitos da radiação , Método de Monte Carlo , Doses de Radiação , Radiologia , Relatório de Pesquisa , Criança , Humanos , Especificidade de Órgãos
11.
J Radiol Prot ; 37(1): 145-159, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28118149

RESUMO

In accordance with recommendations by the International Commission on Radiological Protection, the current European Basic Safety Standards has adopted a reduced occupational eye lens dose limit of 20 mSv yr-1. The radiation safety implications of this dose limit is of concern for clinical staff that work with relatively high dose x-ray angiography and interventional radiology. Presented in this work is a thorough assessment of the occupational eye lens dose based on clinical measurements with active personal dosimeters worn by staff during various types of procedures in interventional radiology, cardiology and neuroradiology. Results are presented in terms of the estimated equivalent eye lens dose for various medical professions. In order to compare the risk of exceeding the regulatory annual eye lens dose limit for the widely different clinical situations investigated in this work, the different medical professions were separated into categories based on their distinct work pattern: staff that work (a) regularly beside the patient, (b) in proximity to the patient and (c) typically at a distance from the patient. The results demonstrate that the risk of exceeding the annual eye lens dose limit is of concern for staff category (a), i.e. mainly the primary radiologist/cardiologist. However, the results also demonstrate that the risk can be greatly mitigated if radiation protection shields are used in the clinical routine. The results presented in this work cover a wide range of clinical situations, and can be used as a first indication of the risk of exceeding the annual eye lens dose limit for staff at other medical centres.


Assuntos
Cardiologia , Cristalino/efeitos da radiação , Neuroimagem , Exposição Ocupacional/análise , Radiologia , Radiometria/métodos , Adulto , Feminino , Humanos , Masculino , Doses de Radiação , Exposição à Radiação , Proteção Radiológica , Radiologia Intervencionista , Estudos Retrospectivos , Medição de Risco , Suécia
12.
Phys Med Biol ; 61(8): 3063-83, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27008040

RESUMO

Although interventional x-ray angiography (XA) procedures involve relatively high radiation doses that can lead to deterministic tissue reactions in addition to stochastic effects, convenient and accurate estimation of absorbed organ doses has traditionally been out of reach. This has mainly been due to the absence of practical means to access dose-related data that describe the physical context of the numerous exposures during an XA procedure. The present work provides a comprehensive and general framework for the determination of absorbed organ dose, based on non-proprietary access to dose-related data by utilizing widely available DICOM radiation dose structured reports. The framework comprises a straightforward calculation workflow to determine the incident kerma and reconstruction of the geometrical relation between the projected x-ray beam and the patient's anatomy. The latter is difficult in practice, as the position of the patient on the table top is unknown. A novel patient-specific approach for reconstruction of the patient position on the table is presented. The proposed approach was evaluated for 150 patients by comparing the estimated position of the primary irradiated organs (the target organs) with their position in clinical DICOM images. The approach is shown to locate the target organ position with a mean (max) deviation of 1.3 (4.3), 1.8 (3.6) and 1.4 (2.9) cm for neurovascular, adult and paediatric cardiovascular procedures, respectively. To illustrate the utility of the framework for systematic and automated organ dose estimation in routine clinical practice, a prototype implementation of the framework with Monte Carlo simulations is included.


Assuntos
Angiografia/métodos , Doenças Cardiovasculares/diagnóstico por imagem , Doenças do Sistema Nervoso/diagnóstico por imagem , Radiologia Intervencionista/métodos , Doenças Vasculares/diagnóstico por imagem , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Doses de Radiação , Raios X , Adulto Jovem
13.
J Radiol Prot ; 35(2): 271-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25785566

RESUMO

The International Commission on Radiological Protection (ICRP) has recommended that the occupational dose limit to the eye lens be substantially reduced. To ensure compliance with these recommendations, monitoring of the occupational eye lens dose is essential in certain hospital work environments. For assessment of the eye lens dose it is recommended to use a supplementary dosimeter placed at a position adjacent to the eye(s). Wearing a dosimeter at eye level can, however, be impractical and distributing and managing additional dosimeters over long periods of time is cumbersome and costly for large clinical sites. An attractive alternative is to utilize active personal dosimeters (APDs), which are routinely used by clinical staff for real-time monitoring of the personal dose equivalent rate (H(p)(10)). In this work, a formalism for the determination of eye lens dose from the response of such APD's worn on the chest is proposed and evaluated. The evaluation is based on both phantom and clinical measurements performed in an x-ray angiography suite for interventional cardiology. The main results show that the eye lens dose to the primary operator and to the assisting clinical staff can be conservatively estimated from the APD response as D(eye)(conductor) = 2.0 APD chest and D(eye)(assisting) = 1.0 APD chest, respectively. However, care should be exercised for particularly short assisting staff and if radiation protection shields are misused. These concerns can be greatly mitigated if the clinical staff are provided with adequate radiation protection training.


Assuntos
Angiografia , Cristalino/efeitos da radiação , Monitorização Ambulatorial/instrumentação , Exposição Ocupacional/análise , Exposição à Radiação/análise , Monitoramento de Radiação/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Neuroradiology ; 55(11): 1365-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24005833

RESUMO

INTRODUCTION: The purpose of this study was to quantify the reduction in patient radiation dose by X-ray imaging technology using image noise reduction and system settings for neuroangiography and to assess its impact on the working habits of the physician. METHODS: Radiation dose data from 190 neuroangiographies and 112 interventional neuroprocedures performed with state-of-the-art image processing and reference system settings were collected for the period January-June 2010. The system was then configured with extra image noise reduction algorithms and system settings, which enabled radiation dose reduction without loss of image quality. Radiation dose data from 174 neuroangiographies and 138 interventional neuroprocedures were collected for the period January-June 2012. Procedures were classified as diagnostic or interventional. Patient radiation exposure was quantified using cumulative dose area product and cumulative air kerma. Impact on working habits of the physician was quantified using fluoroscopy time and number of digital subtraction angiography (DSA) images. RESULTS: The optimized system settings provided significant reduction in dose indicators versus reference system settings (p<0.001): from 124 to 47 Gy cm(2) and from 0.78 to 0.27 Gy for neuroangiography, and from 328 to 109 Gy cm(2) and from 2.71 to 0.89 Gy for interventional neuroradiology. Differences were not significant between the two systems with regard to fluoroscopy time or number of DSA images. CONCLUSION: X-ray imaging technology using an image noise reduction algorithm and system settings provided approximately 60% radiation dose reduction in neuroangiography and interventional neuroradiology, without affecting the working habits of the physician.


Assuntos
Angiografia Cerebral/estatística & dados numéricos , Transtornos Cerebrovasculares/diagnóstico por imagem , Transtornos Cerebrovasculares/terapia , Padrões de Prática Médica/estatística & dados numéricos , Doses de Radiação , Proteção Radiológica/estatística & dados numéricos , Radiografia Intervencionista/estatística & dados numéricos , Transtornos Cerebrovasculares/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Proteção Radiológica/métodos , Radiografia Intervencionista/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído , Suécia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA