RESUMO
Urease is one of the most significant enzymes in the industry. The objective of this research was to isolate and partially purify urease from Vicia sativa seeds with urease characterization. With a 6.4 % yield, the purification fold was 9.0. By using chromatography, it was determined that the isolated urease had a molecular weight of 55 kDa. The maximum urease activity was found following a 60-s incubation period at 40 °C and pH 8. The activity of urease was significantly boosted by a mean of calcium, barium, DL-dithiothreitol, Na2EDTA, and citrate (16.9, 26.6, 18.6, 13.6, and 31 %), respectively. But nickel and mercury caused inhibitory effects and completely inhibited urease activity, indicating the presence of a thiol (-SH) group in the enzyme active site. The Arrhenius plot was used to analyze the thermodynamic constants of activation, Ea, ΔH*, ΔG*, and ΔS*. The results showed that the values were 30 kJ/mol, 93.14 kJ/mol, 107.17 kJ/mol/K, and -40.80 J/mol/K, respectively. The significance of urease extraction from various sources may contribute to our understanding of the metabolism of urea in plants. The current report has novelty as it explained for the first time the kinetics and thermodynamics of hydrolysis of urea and inactivation of urease from V. sativa seeds.
Assuntos
Urease , Vicia sativa , Urease/metabolismo , Vicia sativa/metabolismo , Termodinâmica , Sementes/metabolismo , Ureia/metabolismo , Cinética , Concentração de Íons de HidrogênioRESUMO
Due to growing environmental concerns for better waste management, this study proposes developing a composite aerogel using cellulose nanofibers (CNF) and spent coffee grounds (SCG) through an eco-friendly method for efficient methylene blue (MB) adsorption. Adding SCG to the CNF aerogel altered the physical properties: it increases the volume (4.14 cm3 to 5.25 cm3) and density (0.018 to 0.022 g/cm3) but decrease the water adsorption capacity (2064 % to 1635 %). FTIR spectrum showed distinct functional groups in both all aerogels, showing hydroxyl, glyosidic bonds, and aromatic compounds. Additionally, SCG improved thermal stability of the aerogels. In term of adsorption efficacy, CNF-SCG40% aerogel as exceptionally well. According to Langmuir isotherm models, the adsorption of MB happened in a monolayer, with CNF-SCG40% showing a maximum adsorption capacity of 113.64 mg/g, surpassing CNF aerogel (58.82 mg/g). The study identified that the pseudo-second-order model effectively depicted the adsorption process, indicating a chemical-like interaction. This investigation successfully produced a single-use composite aerogel composed of CNF and SCG using an eco-friendly approach, efficiently adsorbing MB. By utilizing cost-effective materials and eco-friendly methods, this approach offers a sustainable solution for waste management, contributes to an eco-friendly industrial environment, and reduces production expenses and management costs.