Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vaccine ; 40(45): 6471-6480, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36192275

RESUMO

Camel pox (CML) is a widespread infectious viral disease of camels that causes huge economic losses to the camel industry. In this study, a local strain of Camel pox virus (CMLV) was attenuated by 175 serial passages in Vero cells and the residual pathogenicity and infectivity were tested in naïve camels at 120, 150 and 175 passage levels. Also, the safety and immunogenicity of the 175th passage were evaluated in camels using a dose of 104.0 Tissue Culture Dose 50% (TCID50) and monitored for up to one-year post vaccination (pv) for neutralizing antibody. Seroconversion was noted at day 14 pv with neutralizing antibody titers ranging from 0.5 and 1.6 logs over the one-year of the study. Among 8 camels inoculated with the P175 strain, 4 were challenged at 12-month pv with 105.7 TCID50/ml of the original virulent CMLV and complete protection was recorded in all animals. Whole genome sequencing detected six mutations in the original CMLV strain that were not present in the attenuated 175th passage of this strain. Overall, the findings of this study indicated that the 175th passage of the CMLV was attenuated, safe and afforded protection to camels against virulent CMLV, and is therefore, a promising vaccine candidate for the prevention of CML in camels.


Assuntos
Poxviridae , Vacinas Virais , Chlorocebus aethiops , Animais , Camelus , Células Vero , Anticorpos Neutralizantes , Inoculações Seriadas , Vacinas Atenuadas
2.
Microbiol Resour Announc ; 10(41): e0086721, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34647807

RESUMO

Pasteurella multocida causes pneumonia in large ruminants. In this study, we determined the genome sequence of the capsular serotype A Pasteurella multocida strain MOR19, isolated from a calf that died from acute pneumonia.

3.
Microbiol Resour Announc ; 10(30): e0044021, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323614

RESUMO

Control of lumpy skin disease in cattle is based on vaccination with live attenuated vaccines. The Kenyan strain KSGP 0240 is commonly used to vaccinate ruminants against capripox infections, but the conferred protection is still controversial. In this study, we report the draft genome sequence of the vaccine strain KSGP 0240, reisolated from cattle.

4.
Microbiol Resour Announc ; 10(21): e0035921, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042481

RESUMO

Mannheimia haemolytica is the principle bacterial pathogen in ruminants associated with respiratory disease. Here, we report the draft genome sequence of the Mannheimia haemolytica MHA.Sh.MOR19 strain that was recently isolated in the northwest of Morocco from the lung of a lamb that died from pneumonia. The genome size is 2,434,458 bp.

5.
Microorganisms ; 9(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922409

RESUMO

Lumpy skin disease, sheeppox, and goatpox are notifiable diseases of cattle, sheep, and goats, respectively, caused by viruses of the Capripoxvirus genus. They are responsible for both direct and indirect financial losses. These losses arise through animal mortality, morbidity cost of vaccinations, and constraints to animals and animal products' trade. Control and eradication of capripoxviruses depend on early detection of outbreaks, vector control, strict animal movement, and vaccination which remains the most effective means of control. To date, live attenuated vaccines are widely used; however, conferred protection remains controversial. Many vaccines have been associated with adverse reactions and incomplete protection in sheep, goats, and cattle. Many combination- and recombinant-based vaccines have also been developed. Here, we review capripoxvirus infections and the immunity conferred against capripoxviruses by their respective vaccines for each ruminant species. We also review their related cross protection to heterologous infections.

6.
Vet Microbiol ; 256: 109046, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33780805

RESUMO

Lumpy Skin Disease (LSD) and Bluetongue (BT) are the main ruminants viral vector-borne diseases. LSD is endemic in Africa and has recently emerged in Europe and central Asia as a major threat to cattle industry. BT caused great economic damage in Europe during the last decade with a continuous spread to other countries. To control these diseases, vaccination is the only economically viable tool. For LSD, only live-attenuated vaccines (LAVs) are commercially available, whilst for BT both LAVs and inactivated vaccines are available with a limited number of serotypes. In this study, we developed an inactivated, oil adjuvanted bivalent vaccine against both diseases based on LSDV Neethling strain and BTV4. The vaccine was tested for safety and immunogenicity on cattle during a one-year period. Post-vaccination monitoring was carried out by VNT and ELISA. The vaccine was completely safe and elicited high neutralizing antibodies starting from the first week following the second injection up to one year. Furthermore, a significant correlation (R = 0.9040) was observed when comparing VNT and competitive ELISA in BTV4 serological response. Following BTV4 challenge, none of vaccinated and unvaccinated cattle were registered clinical signs, however vaccinated cattle showed full protection from viraemia. In summary, this study highlights the effectiveness of this combined vaccine as a promising solution for both LSD and BT control. It also puts an emphasis on the need for the development of other multivalent inactivated vaccines, which could be greatly beneficial for improving vaccination coverage in endemic countries and prophylaxis of vector-borne diseases.


Assuntos
Vírus Bluetongue/imunologia , Bluetongue/prevenção & controle , Doença Nodular Cutânea/prevenção & controle , Vírus da Doença Nodular Cutânea/imunologia , Vacinas Virais/imunologia , Adjuvantes Imunológicos , Animais , Bluetongue/virologia , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Doença Nodular Cutânea/virologia , Masculino , Ovinos , Vacinação/veterinária , Vacinas Atenuadas/imunologia , Vacinas Combinadas/imunologia , Vacinas de Produtos Inativados/imunologia , Viremia/veterinária
7.
Acta Vet Scand ; 63(1): 9, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663573

RESUMO

BACKGROUND: Goatpox is a viral disease caused by infection with goatpox virus (GTPV) of the genus Capripoxvirus, Poxviridae family. Capripoxviruses cause serious disease to livestock and contribute to huge economic losses. Goatpox and sheeppox are endemic to Africa, particularly north of the Equator, the Middle East and many parts of Asia. GTPV and sheeppox virus are considered host-specific; however, both strains can cause clinical disease in either goats or sheep with more severe disease in the homologous species and mild or sub-clinical infection in the other. Goatpox has never been reported in Morocco, Algeria or Tunisia despite the huge population of goats living in proximity with sheep in those countries. To evaluate the susceptibility and pathogenicity of indigenous North African goats to GTPV infection, we experimentally inoculated eight locally bred goats with a virulent Vietnamese isolate of GTPV. Two uninfected goats were kept as controls. Clinical examination was carried out daily and blood was sampled for virology and for investigating the antibody response. After necropsy, tissues were collected and assessed for viral DNA using real-time PCR. RESULTS: Following the experimental infection, all inoculated goats displayed clinical signs characteristic of goatpox including varying degrees of hyperthermia, loss of appetite, inactivity and cutaneous lesions. The infection severely affected three of the infected animals while moderate to mild disease was noticed in the remaining goats. A high antibody response was developed. High viral DNA loads were detected in skin crusts and nodules, and subcutaneous tissue at the injection site with cycle threshold (Ct) values ranging from 14.6 to 22.9, while lower viral loads were found in liver and lung (Ct = 35.7 and 35.1). The results confirmed subcutaneous tropism of the virus. CONCLUSION: Clinical signs of goatpox were reproduced in indigenous North African goats and confirmed a high susceptibility of the North African goat breed to GTPV infection. A clinical scoring system is proposed that can be applied in GTPV vaccine efficacy studies.


Assuntos
Capripoxvirus/patogenicidade , Doenças das Cabras/virologia , Infecções por Poxviridae/veterinária , África do Norte , Animais , Cabras , Masculino , Infecções por Poxviridae/virologia
8.
Vet Microbiol ; 235: 195-198, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31383302

RESUMO

Peste des Petits Ruminants Virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively in last years through Asia and Africa. PPRV, known to infect exclusively small ruminants, has been recently reported in camels in Iran and Sudan. Reported clinical symptoms are similar to those observed in small ruminants, fatality rate still unknown. However most of the authors reported seropositive camels without clinical signs. Camel sensitivity to PPRV is still controversial and more investigation need to be performed. In this study, we tested camel susceptibility by an experimental infection using a virulent PPRV strain belonging to lineage IV. Young dromedary camels were infected intravenously and observed one month for clinical symptoms. Viraemia and virus secretion charge in swabs were evaluated by PCR. Seroconversion was assessed by ELISA and virus neutralisation test. Infected animals did not manifest any clinical symptoms of the disease and no virus was detected in secretions. Seroconversion was observed from day 14 post infection.


Assuntos
Anticorpos Antivirais/sangue , Camelus/virologia , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/patogenicidade , Animais , Feminino , Masculino , Marrocos , Vírus da Peste dos Pequenos Ruminantes/genética , Soroconversão , Viremia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA