Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7307, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350391

RESUMO

Flexible, light-weight and robust thermoelectric (TE) materials have attracted much attention to convert waste heat from low-grade heat sources, such as human body, to electricity. Carbon nanotube (CNT) yarn is one of the potential TE materials owing to its narrow band-gap energy, high charge carrier mobility, and excellent mechanical property, which is conducive for flexible and wearable devices. Herein, we propose a way to improve the power factor of CNT yarns fabricated from few-walled carbon nanotubes (FWCNTs) by two-step method; Joule-annealing in the vacuum followed by doping with p-type dopants, 2,3,5,6-tetrafluo-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). Numerical calculations and experimental results explain that Joule-annealing and doping modulate the electronic states (Fermi energy level) of FWCNTs, resulting in extremely large thermoelectric power factor of 2250 µW m-1 K-2 at a measurement temperature of 423 K. Joule-annealing removes amorphous carbon on the surface of the CNT yarn, which facilitates doping in the subsequent step, and leads to higher Seebeck coefficient due to the transformation from (semi) metallic to semiconductor behavior. Doping also significantly increases the electrical conductivity due to the effective charge transfers between CNT yarn and F4TCNQ upon the removal of amorphous carbon after Joule-annealing.

2.
Sci Rep ; 9(1): 12610, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31471544

RESUMO

To understand a biological system, it is important to observe structures of biomolecules in the solution where the system is functionalized. Small-Angle X-ray Scattering coupled with Size Exclusion Chromatography (SEC-SAXS) is one of techniques to selectively observe the target molecules in the multi-component system. However, this technique is believed to be available only with a synchrotron-based SAXS instrument due to requirement of high beam intensity and, therefore, the limitation of the beam time was obstacle to satisfy demands from many bio-researchers. We newly developed Laboratory-based Size exclusion chromatography SAXS System (La-SSS) by utilizing a latest laboratory-based SAXS instrument and finely optimization of the balance between flow rate, cell volume, irradiation time and so on. La-SSS succeeded not only decoupling of target protein(s) from non-specific aggregates but also measurement of each concerned component in a multi-component system. In addition, an option: "stopping mode", which is designed for improving statistics of SAXS profile, realized a high S/N data acquisition for the most interesting protein in a multi-component system. Furthermore, by utilizing a column having small bed volume, the small-scale SEC-SAXS study makes available. Through optimization of instrumental parameters and environments, La-SSS is highly applicable for experimental requirements from various biological samples. It is strongly expected that a La-SSS concept must be a normal option for laboratory-based SAXS in the near future.

3.
Inorg Chem ; 54(8): 3896-904, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25833295

RESUMO

K2NiF4-type LaSrAlO4 and Sr2TiO4 exhibit anisotropic and isotropic thermal expansion, respectively; however, their structural origin is unknown. To address this unresolved issue, the crystal structure and thermal expansion of LaSrAlO4 and Sr2TiO4 have been investigated through high-temperature neutron and synchrotron X-ray powder diffraction experiments and ab initio electronic calculations. The thermal expansion coefficient (TEC) along the c-axis (αc) being higher than that along the a-axis (αa) of LaSrAlO4 [αc = 1.882(4)αa] is mainly ascribed to the TEC of the interatomic distance between Al and apical oxygen O2 α(Al-O2) being higher than that between Al and equatorial oxygen O1 α(Al-O1) [α(Al-O2) = 2.41(18)α(Al-O1)]. The higher α(Al-O2) is attributed to the Al-O2 bond being longer and weaker than the Al-O1 bond. Thus, the minimum electron density and bond valence of the Al-O2 bond are lower than those of the Al-O1 bond. For Sr2TiO4, the Ti-O2 interatomic distance, d(Ti-O2), is equal to that of Ti-O1, d(Ti-O1) [d(Ti-O2) = 1.0194(15)d(Ti-O1)], relative to LaSrAlO4 [d(Al-O2) = 1.0932(9)d(Al-O1)]. Therefore, the bond valence and minimum electron density of the Ti-O2 bond are nearly equal to those of the Ti-O1 bond, leading to isotropic thermal expansion of Sr2TiO4 than LaSrAlO4. These results indicate that the anisotropic thermal expansion of K2NiF4-type oxides, A2BO4, is strongly influenced by the anisotropy of B-O chemical bonds. The present study suggests that due to the higher ratio of interatomic distance d(B-O2)/d(B-O1) of A2(2.5+)B(3+)O4 compared with A2(2+)B(4+)O4, A2(2.5+)B(3+)O4 compounds have higher α(B-O2), and A2(2+)B(4+)O4 materials exhibit smaller α(B-O2), leading to the anisotropic thermal expansion of A2(2.5+)B(3+)O4 and isotropic thermal expansion of A2(2+)B(4+)O4. The "true" thermal expansion without the chemical expansion of A2BO4 is higher than that of ABO3 with a similar composition.

4.
Phys Chem Chem Phys ; 15(18): 6779-82, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23549619

RESUMO

The experimental electron-density distribution of ferroelectric bismuth ferrite (BiFeO3) has been visualized using the synchrotron X-ray powder diffraction data and the maximum-entropy method. The present work has clearly revealed the partial covalency of the Bi-O bond, which is a key to understand the spontaneous polarization. Density functional theory (DFT) calculation has supported the validity of the experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA