Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Life (Basel) ; 13(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37374080

RESUMO

The formose reaction is a plausible prebiotic chemistry, famed for its production of sugars. In this work, we demonstrate that the Cannizzaro process is the dominant process in the formose reaction under many different conditions, thus necessitating a catalyst for the formose reaction under various environmental circumstances. The investigated formose reactions produce primarily organic acids associated with metabolism, a protometabolic system, and yield very little sugar left over. This is due to many of the acids forming from the degradation and Cannizaro reactions of many of the sugars produced during the formose reaction. We also show the heterogeneous Lewis-acid-based catalysis of the formose reaction by mineral systems associated with serpentinization. The minerals that showed catalytic activity include olivine, serpentinite, and calcium, and magnesium minerals including dolomite, calcite, and our Ca/Mg-chemical gardens. In addition, computational studies were performed for the first step of the formose reaction to investigate the reaction of formaldehyde, to either form methanol and formic acid under a Cannizzaro reaction or to react to form glycolaldehyde. Here, we postulate that serpentinization is therefore the startup process necessary to kick off a simple proto metabolic system-the formose protometabolic system.

2.
Orig Life Evol Biosph ; 53(1-2): 113-125, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32749559

RESUMO

Prebiotic processes required a reliable source of free energy and complex chemical mixtures that may have included sugars. The formose reaction is a potential source of those sugars. At moderate to elevated temperature and pH ranges, these sugars rapidly decay. Here it is shown that CaCO3-based chemical gardens catalyze the formose reaction to produce glucose, ribose, and other monosaccharides. These thin inorganic membranes are explored as analogs of hydrothermal vent materials-a possible place for the origin of life-and similarly exposed to very steep pH gradients. Supported by simulations of a simple reaction-diffusion model, this study shows that such gradients allow for the dynamic accumulation of sugars in specific layers of the thin membrane, effectively protecting formose sugar yields. Therefore, the formose reaction may be a plausible prebiotic reaction in alkaline hydrothermal vent environments, possibly setting the stage for an RNA world.


Assuntos
Fontes Hidrotermais , Carboidratos , Ribose , Catálise
3.
Life (Basel) ; 12(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35207486

RESUMO

Life is a complex, open chemical system that must be supported with energy inputs. If one fathoms how simple early life must have been, the complexity of modern-day life is staggering by comparison. A minimally complex system that could plausibly provide pyrophosphates for early life could be the oxidation of reduced phosphorus sources such as hypophosphite and phosphite. Like all plausible prebiotic chemistries, this system would have been altered by minerals and rocks in close contact with the evolving solutions. This study addresses the different types of perturbations that minerals might have on this chemical system. This study finds that minerals may inhibit the total production of oxidized phosphorus from reduced phosphorus species, they may facilitate the production of phosphate, or they may facilitate the production of pyrophosphate. This study concludes with the idea that mineral perturbations from the environment increase the chemical complexity of this system.

4.
Astrobiology ; 21(10): 1264-1276, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34551269

RESUMO

The possibility of life in the venusian clouds was proposed in the 1960s, and recently this hypothesis has been revived with the potential detection of phosphine (PH3) in Venus' atmosphere. These observations may have detected ∼5-20 ppb phosphine on Venus (Greaves et al., 2020), which raises questions about venusian atmospheric/geochemical processes and suggests that this phosphine could possibly be generated by biological processes. In such a claim, it is essential to understand the abiotic phosphorus chemistry that may occur under Venus-relevant conditions, particularly those processes that may result in phosphine generation. Here, we discuss two related abiotic routes for phosphine generation within the atmosphere of Venus. Based on our assessment, corrosion of large impactors as they ablate near Venus' cloud layer, and the presence of reduced phosphorus compounds in the subcloud layer could result in production of phosphine and may explain the phosphine detected in Venus' atmosphere or on other rocky planets. We end on a cautionary note: although there may be life in the clouds of Venus, the detection of a simple, single gas, phosphine, is likely not a decisive indicator.


Assuntos
Fosfinas , Vênus , Meio Ambiente Extraterreno , Planetas
5.
Orig Life Evol Biosph ; 51(3): 185-213, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34279769

RESUMO

How life arose on the primitive Earth is one of the biggest questions in science. Biomolecular emergence scenarios have proliferated in the literature but accounting for the ubiquity of oxidized (+ 5) phosphate (PO43-) in extant biochemistries has been challenging due to the dearth of phosphate and molecular oxygen on the primordial Earth. A compelling body of work suggests that exogenous schreibersite ((Fe,Ni)3P) was delivered to Earth via meteorite impacts during the Heavy Bombardment (ca. 4.1-3.8 Gya) and there converted to reduced P oxyanions (e.g., phosphite (HPO32-) and hypophosphite (H2PO2-)) and phosphonates. Inspired by this idea, we review the relevant literature to deduce a plausible reduced phospholipid analog of modern phosphatidylcholines that could have emerged in a primordial hydrothermal setting. A shallow alkaline lacustrine basin underlain by active hydrothermal fissures and meteoritic schreibersite-, clay-, and metal-enriched sediments is envisioned. The water column is laden with known and putative primordial hydrothermal reagents. Small system dimensions and thermal- and UV-driven evaporation further concentrate chemical precursors. We hypothesize that a reduced phospholipid arises from Fischer-Tropsch-type (FTT) production of a C8 alkanoic acid, which condenses with an organophosphinate (derived from schreibersite corrosion to hypophosphite with subsequent methylation/oxidation), to yield a reduced protophospholipid. This then condenses with an α-amino nitrile (derived from Strecker-type reactions) to form the polar head. Preliminary modeling results indicate that reduced phospholipids do not aggregate rapidly; however, single layer micelles are stable up to aggregates with approximately 100 molecules.


Assuntos
Meteoroides , Fósforo , Planeta Terra , Fosfatos , Fosfolipídeos
6.
Life (Basel) ; 10(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731352

RESUMO

Sugars are essential for the formation of genetic elements such as RNA and as an energy/food source. Thus, the formose reaction, which autocatalytically generates a multitude of sugars from formaldehyde, has been viewed as a potentially important prebiotic source of biomolecules at the origins of life. When analyzing our formose solutions we find that many of the chemical species are simple carboxylic acids, including α-hydroxy acids, associated with metabolism. In this work we posit that the study of the formose reaction, under alkaline conditions and moderate hydrothermal temperatures, should not be solely focused on sugars for genetic materials, but should focus on the origins of metabolism (via metabolic molecules) as well.

7.
Life (Basel) ; 10(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722517

RESUMO

The availability of nucleotides on the early Earth is of great significance for the origin of a self-replicating system capable of undergoing evolution. We hereby report the successful phosphorylation reactions of the nucleoside uridine under heating in the "drying pool" prebiotic model at temperatures ranging from 60-75 °C, and by using pyrophosphate as a phosphorylation agent. Uridine monophosphates (UMP) such as uridine-5'-monophosphate (5'-UMP), 2'-UMP, and 3'-UMP, as well as cyclic 2'-3'-UMP, were identified by 31P-NMR. In addition to the above-mentioned products, a dimer of uridine-phosphate-uridine (U-P-U) was also observed. The reactions were promoted by white quartz sand, Mg2+, and by using urea as a condensation agent. The reactions also proceeded without this mixture; however, the yields increased remarkably with the presence of the above-mentioned materials. The results suggest that a hot/evaporating-drying pool of water containing organics, salts, and reactive phosphorus could be sufficient to form significant phosphate esters.

8.
Life (Basel) ; 10(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283673

RESUMO

The question of where life originated has been contentious for a very long time. Scientists have invoked many environments to address this question. Often, we find ourselves beholden to a location, especially if we think life originated once and then evolved into the myriad forms we now know today. In this brief commentary, we wish to lay out the following understanding: hydrothermal environments are energetically robust locations for the origins and early evolution of life as we know it. Two environments typify hydrothermal conditions, hydrothermal fields on dry land and submarine hydrothermal vents. If life originated only once, then we must choose between these two environments; however, there is no reason to assume life emerged only once. We conclude with the idea that rather than having an "either or" mind set about the origin of life a "yes and" mind set might be a better paradigm with which to problem solve within this field. Finally, we shall discuss further research with regards to both environments.

9.
J Toxicol ; 2013: 372986, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24368913

RESUMO

Sucralose was developed as a low cost artificial sweetener that is nonmetabolizable in humans. Sucralose can withstand changes in pH and temperature and is not degraded by the wastewater treatment process. Since the molecule can withstand heat, acidification, and microbial degradation, it is accumulating in the environment and has been found in wastewater, estuaries, rivers, and the Gulf Stream. Environmental isolates were cultured in the presence of sucralose looking for potential sucralose metabolism or growth acceleration responses. Sucralose was found to be nonnutritive and demonstrated bacteriostatic effects on all six isolates. This growth inhibition was directly proportional to the concentration of sucralose exposure, and the amount of the growth inhibition appeared to be species-specific. The bacteriostatic effect may be due to a decrease in sucrose uptake by bacteria exposed to sucralose. We have determined that sucralose inhibits invertase and sucrose permease. These enzymes cannot catalyze hydrolysis or be effective in transmembrane transport of the sugar substitute. Current environmental concentrations should not have much of an effect on environmental bacteria since the bacteriostatic effect seems to be consecration based; however, as sucralose accumulates in the environment, we must consider it a contaminant, especially for microenvironments.

10.
ISRN Toxicol ; 2013: 415070, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24198974

RESUMO

Sucralose was developed as a low-cost artificial sweetener that is nonmetabolizable and can withstand changes in pH and temperature. It is not degraded by the wastewater treatment process and thus has been found in waste water, estuaries, rivers and the Gulf Stream. Since the molecule can withstand heat, acidification, and microbial degradation, it is accumulating in the environment. The highest concentration of environmental sucralose detected to date is 300 ng/L. Our lab has isolated six bacterial species from areas that have been exposed to sucralose. We then cultured these isolates in the presence of sucralose looking for potential sucralose metabolism or growth acceleration. Instead we found something very interesting, bacteriostatic effects exhibited on all six isolates. This inhibition was directly proportional to the concentration of sucralose exposure. The efficiency of the growth inhibition seemed to be species specific, with various concentrations inhibiting each organism differently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA