Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1241711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023170

RESUMO

Background and purpose: This study aimed to investigate the feasibility of safe-dose escalation to dominant intraprostatic lesions (DILs) and assess the clinical impact using dose-volume (DV) and biological metrics in photon and proton therapy. Biological parameters defined as late grade ≥ 2 gastrointestinal (GI) and genitourinary (GU) derived from planned (D P) and accumulated dose (D A) were utilized. Materials and methods: In total, 10 patients with high-risk prostate cancer with multiparametric MRI-defined DILs were investigated. Each patient had two plans with a focal boost to the DILs using intensity-modulated proton therapy (IMPT) and volumetric-modulated arc therapy (VMAT). Plans were optimized to obtain DIL coverage while respecting the mandatory organ-at-risk constraints. For the planning evaluation, DV metrics, tumor control probability (TCP) for the DILs and whole prostate excluding the DILs (prostate-DILs), and normal tissue complication probability (NTCP) for the rectum and bladder were calculated. Wilcoxon signed-rank test was used for analyzing TCP and NTCP data. Results: IMPT achieved a higher Dmean for the DILs compared to VMAT (IMPT: 68.1 GyRBE vs. VMAT: 66.6 Gy, p < 0.05). Intermediate-high rectal and bladder doses were lower for IMPT (p < 0.05), while the high-dose region (V60 Gy) remained comparable. IMPT-TCP for prostate-DIL were higher compared to VMAT (IMPT: 86%; α/ß = 3, 94.3%; α/ß = 1.5 vs. VMAT: 84.7%; α/ß = 3, 93.9%; α/ß = 1.5, p < 0.05). Likewise, IMPT obtained a moderately higher DIL TCP (IMPT: 97%; α/ß = 3, 99.3%; α/ß = 1.5 vs. VMAT: 95.9%; α/ß = 3, 98.9%; α/ß = 1.5, p < 0.05). Rectal D A-NTCP displayed the highest GI toxicity risk at 5.6%, and IMPT has a lower GI toxicity risk compared to VMAT-predicted Quantec-NTCP (p < 0.05). Bladder D P-NTCP projected a higher GU toxicity than D A-NTCP, with VMAT having the highest risk (p < 0.05). Conclusion: Dose escalation using IMPT is able to achieve a high TCP for the DILs, with the lowest rectal and bladder DV doses at the intermediate-high-dose range. The reduction in physical dose was translated into a lower NTCP (p < 0.05) for the bladder, although rectal toxicity remained equivalent.

2.
Phys Med Biol ; 68(15)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37437590

RESUMO

Objective. Automatic deformable image registration (DIR) is a critical step in adaptive radiotherapy. Manually delineated organs-at-risk (OARs) contours on planning CT (pCT) scans are deformably registered onto daily cone-beam CT (CBCT) scans for delivered dose accumulation. However, evaluation of registered contours requires human assessment, which is time-consuming and subjects to high inter-observer variability. This work proposes a deep learning model that allows accurate prediction of Dice similarity coefficients (DSC) of registered contours in prostate radiotherapy.Approach. Our dataset comprises 20 prostate cancer patients with 37-39 daily CBCT scans each. The pCT scans and planning contours were deformably registered to each corresponding CBCT scan to generate virtual CT (vCT) scans and registered contours. The DSC score, which is a common contour-based validation metric for registration quality, between the registered and manual contours were computed. A Siamese neural network was trained on the vCT-CBCT image pairs to predict DSC. To assess the performance of the model, the root mean squared error (RMSE) between the actual and predicted DSC were computed.Main results. The model showed promising results for predicting DSC, giving RMSE of 0.070, 0.079 and 0.118 for rectum, prostate, and bladder respectively on the holdout test set. Clinically, a low RMSE implies that the predicted DSC can be reliably used to determine if further DIR assessment from physicians is required. Considering the event where a registered contour is classified as poor if its DSC is below 0.6 and good otherwise, the model achieves an accuracy of 92% for the rectum. A sensitivity of 0.97 suggests that the model can correctly identify 97% of poorly registered contours, allowing manual assessment of DIR to be triggered.Significance. We propose a neural network capable of accurately predicting DSC of deformably registered OAR contours, which can be used to evaluate eligibility for plan adaptation.


Assuntos
Neoplasias de Cabeça e Pescoço , Masculino , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37157884

RESUMO

PURPOSE: The purpose of this study was to evaluate the radiotherapy planning feasibility of dose escalation with intensity-modulated proton therapy (IMPT) to hypoxic tumor regions identified on 18F-Fluoromisonidazole (FMISO) positron emission tomography and computed tomography (PET-CT) in NPC. MATERIALS AND METHODS: Nine patients with stages T3-4N0-3M0 NPC underwent 18F-FMISO PET-CT before and during week 3 of radiotherapy. The hypoxic volume (GTVhypo) is automatically generated by applying a subthresholding algorithm within the gross tumor volume (GTV) with a tumor to muscle standardized uptake value (SUV) ratio of 1.3 on the 18F-FMISO PET-CT scan. Two proton plans were generated for each patient, a standard plan to 70 Gy and dose escalation plan with upfront boost followed by standard 70GyE plan. The stereotactic boost was planned with single-field uniform dose optimization using two fields to deliver 10 GyE in two fractions to GTVhypo. The standard plan was generated with IMPT with robust optimization to deliver 70GyE, 60GyE in 33 fractions using simultaneous integrated boost technique. A plan sum was generated for assessment. RESULTS: Eight of nine patients showed tumor hypoxia on the baseline 18F-FMISO PET-CT scan. The mean hypoxic tumor volume was 3.9 cm3 (range .9-11.9cm3 ). The average SUVmax of the hypoxic volume was 2.2 (range 1.44-2.98). All the dose-volume parameters met the planning objectives for target coverage. Dose escalation was not feasible in three of eight patients as the D0.03cc of temporal lobe was greater than 75GyE. CONCLUSIONS: The utility of boost to the hypoxic volume before standard course of radiotherapy with IMPT is dosimetrically feasible in selected patients. Clinical trials are warranted to determine the clinical outcomes of this approach.

5.
Front Oncol ; 12: 1084311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591496

RESUMO

Background and purpose: Normal tissue complication probability (NTCP) parameters derived from traditional 3D plans may not be ideal in defining toxicity outcomes for modern radiotherapy techniques. This study aimed to derive parameters of the Lyman-Kutcher-Burman (LKB) NTCP model using prospectively scored clinical data for late gastrointestinal (GI) and genitourinary (GU) toxicities for high-risk prostate cancer patients treated using volumetric-modulated-arc-therapy (VMAT). Dose-volume-histograms (DVH) extracted from planned (DP) and accumulated dose (DA) were used. Material and methods: DP and DA obtained from the DVH of 150 prostate cancer patients with pelvic-lymph-nodes irradiation treated using VMAT were used to generate LKB-NTCP parameters using maximum likelihood estimations. Defined GI and GU toxicities were recorded up to 3-years post RT follow-up. Model performance was measured using Hosmer-Lemeshow goodness of fit test and the mean area under the receiver operating characteristics curve (AUC). Bootstrapping method was used for internal validation. Results: For mild-severe (Grade ≥1) GI toxicity, the model generated similar parameters based on DA and DP DVH data (DA-D50:71.6 Gy vs DP-D50:73.4; DA-m:0.17 vs DP-m:0.19 and DA/P-n 0.04). The 95% CI for DA-D50 was narrower and achieved an AUC of >0.6. For moderate-severe (Grade ≥2) GI toxicity, DA-D50 parameter was higher and had a narrower 95% CI (DA-D50:77.9 Gy, 95% CI:76.4-79.6 Gy vs DP-D50:74.6, 95% CI:69.1-85.4 Gy) with good model performance (AUC>0.7). For Grade ≥1 late GU toxicity, D50 and n parameters for DA and DP were similar (DA-D50: 58.8 Gy vs DP-D50: 59.5 Gy; DA-n: 0.21 vs DP-n: 0.19) with a low AUC of<0.6. For Grade ≥2 late GU toxicity, similar NTCP parameters were attained from DA and DP DVH data (DA-D50:81.7 Gy vs DP-D50:81.9 Gy; DA-n:0.12 vs DP-n:0.14) with an acceptable AUCs of >0.6. Conclusions: The achieved NTCP parameters using modern RT techniques and accounting for organ motion differs from QUANTEC reported parameters. DA-D50 of 77.9 Gy for GI and DA/DP-D50 of 81.7-81.9 Gy for GU demonstrated good predictability in determining the risk of Grade ≥2 toxicities especially for GI derived D50 and are recommended to incorporate as part of the DV planning constraints to guide dose escalation strategies while minimising the risk of toxicity.

6.
BMC Cancer ; 20(1): 1045, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126867

RESUMO

BACKGROUND: Recent evidence supports hippocampal avoidance with whole brain radiotherapy (HA-WBRT) as the recommended treatment option in patients with good prognosis and multiple brain metastases as this results in better neurocognitive preservation compared to whole brain radiotherapy. However, there is often poor tumour control with this technique due to the low doses given. Stereotactic Radiosurgery (SRS), a form of focused radiotherapy which is given to patients who have a limited number of brain metastases, delivers a higher radiation dose to the metastases resulting in better target lesion control. With improvements in radiation technology, advanced dose-painting techniques now allow a simultaneous integrated boost (SIB) dose to lesions whilst minimising doses to the hippocampus to potentially improve brain tumour control and preserve cognitive outcomes. This technique is abbreviated to HA-SIB-WBRT or HA-WBRT+SIB. METHODS: We hypothesise that the SIB in HA-SIB-WBRT (experimental arm) will result in better tumour control compared to HA-WBRT (control arm). This may also lead to better intracranial disease control as well as functional and survival outcomes. We aim to conduct a prospective randomised phase II trial in patients who have good performance status, multiple brain metastases (4-25 lesions) and a reasonable life expectancy (> 6 months). These patients will be stratified according to the number of brain metastases and randomised between the 2 arms. We aim for a recruitment of 100 patients from a single centre over a period of 2 years. Our primary endpoint is target lesion control. These patients will be followed up over the following year and data on imaging, toxicity, quality of life, activities of daily living and cognitive measurements will be collected at set time points. The results will then be compared across the 2 arms and analysed. DISCUSSION: Patients with brain metastases are living longer. Maintaining functional independence and intracranial disease control is thus increasingly important. Improving radiotherapy treatment techniques could provide better control and survival outcomes whilst maintaining quality of life, cognition and functional capacity. This trial will assess the benefits and possible toxicities of giving a SIB to HA-WBRT. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT04452084 . Date of registration 30th June 2020.


Assuntos
Neoplasias Encefálicas/radioterapia , Irradiação Craniana/métodos , Hipocampo/efeitos da radiação , Neoplasias/radioterapia , Tratamentos com Preservação do Órgão/métodos , Qualidade de Vida , Atividades Cotidianas , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/secundário , Estudos de Casos e Controles , Ensaios Clínicos Fase II como Assunto , Fracionamento da Dose de Radiação , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA