Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 10(6): 1272-1286, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116215

RESUMO

The use of biobased materials in additive manufacturing is a promising long-term strategy for advancing the polymer industry toward a circular economy and reducing the environmental impact. In commercial 3D printing formulations, there is still a scarcity of efficient biobased polymer resins. This research proposes vegetable oils as biobased components to formulate the stereolithography (SLA) resin. Application of nanocellulose filler, prepared from agricultural waste, remarkably improves the printed material's performance properties. The strong bonding of nanofibrillated celluloses' (NFCs') matrix helps develop a strong interface and produce a polymer nanocomposite with enhanced thermal properties and dynamical mechanical characteristics. The ultra-low NFC content of 0.1-1.0 wt% (0.07-0.71 vol%) was examined in printed samples, with the lowest concentration yielding some of the most promising results. The developed SLA resins showed good printability, and the printing accuracy was not decreased by adding NFC. At the same time, an increase in the resin viscosity with higher filler loading was observed. Resins maintained high transparency in the 500-700 nm spectral region. The glass transition temperature for the 0.71 vol% composition increased by 28°C when compared to the nonreinforced composition. The nanocomposite's stiffness has increased fivefold for the 0.71 vol% composition. The thermal stability of printed compositions was retained after cellulose incorporation, and thermal conductivity was increased by 11%. Strong interfacial interactions were observed between the cellulose and the polymer in the form of hydrogen bonding between hydroxyl and ester groups, which were confirmed by Fourier-transform infrared spectroscopy. This research demonstrates a great potential to use acrylated vegetable oils and nanocellulose fillers as a feedstock to produce high-performance resins for sustainable SLA 3D printing.

2.
Nanomaterials (Basel) ; 13(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37513043

RESUMO

Titanium (Ti) is widely recognized for its exceptional properties and compatibility with medical applications. In our study, we successfully formed laser-induced periodic surface structures (LIPSS) on Ti plates with a periodicity of 520-740 nm and a height range of 150-250 nm. To investigate the morphology and chemical composition of these surfaces, we employed various techniques, including field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Additionally, we utilized a drop-shape analyzer to determine the wetting properties of the surfaces. To evaluate the antibacterial activity, we followed the ISO 22196:2011 standard, utilizing reference bacterial cultures of Gram-positive Staphylococcus aureus (ATCC 25923) and Gram-negative Escherichia coli (ATCC 25922). The results revealed enhanced antibacterial properties against Staphylococcus aureus by more than 99% and Escherichia coli by more than 80% in comparison with non-irradiated Ti. Furthermore, we conducted experiments using the Escherichia coli bacteriophage T4 (ATCC 11303-B4) and the bacterial host Escherichia coli (ATCC 11303) to investigate the impact of Ti plates on the stability of the bacteriophage. Overall, our findings highlight the potential of LIPSS on Ti plates for achieving enhanced antibacterial activity against common bacterial strains while maintaining the stability of bacteriophages.

3.
Nanoscale Res Lett ; 8(1): 264, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23735193

RESUMO

In this work we study the mechanisms of laser radiation interaction with elementary semiconductors such as Si and Ge and their solid solution SiGe. As a result of this investigation, the mechanisms of nanocones and microcones formation on a surface of semiconductor were proposed. We have shown the possibility to control the size and the shape of cones both by the laser. The main reason for the formation of nanocones is the mechanical compressive stresses due to the atoms' redistribution caused by the gradient of temperature induced by strongly absorbed laser radiation. According to our investigation, the nanocone formation mechanism in semiconductors is characterized by two stages. The first stage is characterized by formation of a p-n junction for elementary semiconductors or of a Ge/Si heterojunction for SiGe solid solution. The generation and redistribution of intrinsic point defects in elementary semiconductors and Ge atoms concentration on the irradiated surface of SiGe solid solution in temperature gradient field take place at this stage due to the thermogradient effect which is caused by strongly absorbed laser radiation. The second stage is characterized by formation of nanocones due to mechanical plastic deformation of the compressed Ge layer on Si. Moreover, a new 1D-graded band gap structure in elementary semiconductors due to quantum confinement effect was formed. For the formation of microcones Ni/Si structure was used. The mechanism of the formation of microcones is characterized by two stages as well. The first stage is the melting of Ni film after irradiation by laser beam and formation of Ni islands due to surface tension force. The second step is the melting of Ni and subsequent manifestations of Marangoni effect with the growth of microcones.

4.
Nanoscale Res Lett ; 7(1): 428, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22849869

RESUMO

In this work, we study the mechanism of nanocone formation on a surface of elementary semiconductors by Nd:YAG laser radiation. Our previous investigations of SiGe and CdZnTe solid solutions have shown that nanocone formation mechanism is characterized by two stages. The first stage is characterized by formation of heterostructure, for example, Ge/Si heterostructure from SiGe solid solutions, and the second stage is characterized by formation of nanocones by mechanical plastic deformation of the compressed Ge layer on Si due to mismatch of Si and Ge crystalline lattices. The mechanism of nanocone formation for elementary semiconductors is not clear until now. Therefore, the main goal of our investigations is to study the stages of nanocone formation in elementary semiconductors. A new mechanism of p-n junction formation by laser radiation in the elementary semiconductor as a first stage of nanocone formation is proposed. We explain this effect by the following way: p-n junction is formed by generation and redistribution of intrinsic point defects in temperature gradient field - the thermogradient effect, which is caused by strongly absorbed laser radiation. According to the thermogradient effect, interstitial atoms drift towards the irradiated surface, but vacancies drift to the opposite direction - in the bulk of semiconductor. Since interstitials in Ge crystal are of n-type and vacancies are known to be of p-type, a n-p junction is formed. The mechanism is confirmed by the appearance of diode-like current-voltage characteristics after i-Ge irradiation crystal by laser radiation. The mechanism in Si is confirmed by conductivity type inversion and increased microhardness of Si crystal. The second stage of nanocone formation is laser heating up of top layer enriched by interstitial atoms with its further plastic deformation due to compressive stress caused by interstitials in the top layer and vacancies in the buried layer.

5.
Nanoscale Res Lett ; 6: 582, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22060172

RESUMO

On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA