Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Blood Adv ; 8(20): 5400-5414, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39159429

RESUMO

ABSTRACT: Osteopenia and osteoporosis are common long-term complications of the cytotoxic conditioning regimen for hematopoietic stem cell transplantation (HSCT). We examined mesenchymal stem and progenitor cells (MSPCs), which include skeletal progenitors, from mice undergoing HSCT. Such MSPCs showed reduced fibroblastic colony-forming units frequency, increased DNA damage, and enhanced occurrence of cellular senescence, whereas there was a reduced bone volume in animals that underwent HSCT. This reduced MSPC function correlated with elevated activation of the small Rho guanosine triphosphate hydrolase CDC42, disorganized F-actin distribution, mitochondrial abnormalities, and impaired mitophagy in MSPCs. Changes and defects similar to those in mice were also observed in MSPCs from humans undergoing HSCT. A pharmacological treatment that attenuated the elevated activation of CDC42 restored F-actin fiber alignment, mitochondrial function, and mitophagy in MSPCs in vitro. Finally, targeting CDC42 activity in vivo in animals undergoing transplants improved MSPC quality to increase both bone volume and trabecular bone thickness. Our study shows that attenuation of CDC42 activity is sufficient to attenuate reduced function of MSPCs in a BM transplant setting.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Proteína cdc42 de Ligação ao GTP , Animais , Humanos , Camundongos , Actinas/metabolismo , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Mitofagia
2.
Nature ; 631(8021): 645-653, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987596

RESUMO

Platelet homeostasis is essential for vascular integrity and immune defence1,2. Although the process of platelet formation by fragmenting megakaryocytes (MKs; thrombopoiesis) has been extensively studied, the cellular and molecular mechanisms required to constantly replenish the pool of MKs by their progenitor cells (megakaryopoiesis) remains unclear3,4. Here we use intravital imaging to track the cellular dynamics of megakaryopoiesis over days. We identify plasmacytoid dendritic cells (pDCs) as homeostatic sensors that monitor the bone marrow for apoptotic MKs and deliver IFNα to the MK niche triggering local on-demand proliferation and maturation of MK progenitors. This pDC-dependent feedback loop is crucial for MK and platelet homeostasis at steady state and under stress. pDCs are best known for their ability to function as vigilant detectors of viral infection5. We show that virus-induced activation of pDCs interferes with their function as homeostatic sensors of megakaryopoiesis. Consequently, activation of pDCs by SARS-CoV-2 leads to excessive megakaryopoiesis. Together, we identify a pDC-dependent homeostatic circuit that involves innate immune sensing and demand-adapted release of inflammatory mediators to maintain homeostasis of the megakaryocytic lineage.


Assuntos
Células Dendríticas , Homeostase , Megacariócitos , Trombopoese , Animais , Feminino , Humanos , Masculino , Camundongos , Apoptose , Plaquetas/citologia , Medula Óssea , Linhagem da Célula , Proliferação de Células , Células Dendríticas/imunologia , Células Dendríticas/citologia , Retroalimentação Fisiológica , Imunidade Inata , Microscopia Intravital , Megacariócitos/citologia , Megacariócitos/imunologia , Camundongos Endogâmicos C57BL , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/fisiopatologia , COVID-19/virologia
4.
iScience ; 26(8): 107328, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520699

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) describes the age-related acquisition of somatic mutations in hematopoietic stem/progenitor cells (HSPC) leading to clonal blood cell expansion. Although CHIP mutations drive myeloid malignancies like myelodysplastic syndromes (MDS) it is unknown if clonal expansion is attributable to changes in cell type kinetics, or involves reorganization of the hematopoietic hierarchy. Using computational modeling we analyzed differentiation and proliferation kinetics of cultured hematopoietic stem cells (HSC) from 8 healthy individuals, 7 CHIP, and 10 MDS patients. While the standard hematopoietic hierarchy explained HSPC kinetics in healthy samples, 57% of CHIP and 70% of MDS samples were best described with alternative hierarchies. Deregulated kinetics were found at various HSPC compartments with high inter-individual heterogeneity in CHIP and MDS, while altered HSC rates were most relevant in MDS. Quantifying kinetic heterogeneity in detail, we show that reorganization of the HSPC compartment is already detectable in the premalignant CHIP state.

5.
Haematologica ; 108(2): 490-501, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950533

RESUMO

Remodeling of the bone marrow microenvironment in chronic inflammation and in aging reduces hematopoietic stem cell (HSC) function. To assess the mechanisms of this functional decline of HSC and find strategies to counteract it, we established a model in which the Sfrp1 gene was deleted in Osterix+ osteolineage cells (OS1Δ/Δ mice). HSC from these mice showed severely diminished repopulating activity with associated DNA damage, enriched expression of the reactive oxygen species pathway and reduced single-cell proliferation. Interestingly, not only was the protein level of Catenin beta-1 (bcatenin) elevated, but so was its association with the phosphorylated co-activator p300 in the nucleus. Since these two proteins play a key role in promotion of differentiation and senescence, we inhibited in vivo phosphorylation of p300 through PP2A-PR72/130 by administration of IQ-1 in OS1Δ/Δ mice. This treatment not only reduced the b-catenin/phosphop300 association, but also decreased nuclear p300. More importantly, in vivo IQ-1 treatment fully restored HSC repopulating activity of the OS1Δ/Δ mice. Our findings show that the osteoprogenitor Sfrp1 is essential for maintaining HSC function. Furthermore, pharmacological downregulation of the nuclear b-catenin/phospho-p300 association is a new strategy to restore poor HSC function.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Camundongos , Animais , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Medula Óssea/metabolismo , Envelhecimento , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
6.
Commun Biol ; 5(1): 1246, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380073

RESUMO

Stromal cells interact with immune cells during initiation and resolution of immune responses, though the precise underlying mechanisms remain to be resolved. Lessons learned from stromal cell-based therapies indicate that environmental signals instruct their immunomodulatory action contributing to immune response control. Here, to the best of our knowledge, we show a novel function for the guanine-exchange factor DOCK2 in regulating immunosuppressive function in three human stromal cell models and by siRNA-mediated DOCK2 knockdown. To identify immune function-related stromal cell molecular signatures, we first reprogrammed mesenchymal stem/progenitor cells (MSPCs) into induced pluripotent stem cells (iPSCs) before differentiating these iPSCs in a back-loop into MSPCs. The iPSCs and immature iPS-MSPCs lacked immunosuppressive potential. Successive maturation facilitated immunomodulation, while maintaining clonogenicity, comparable to their parental MSPCs. Sequential transcriptomics and methylomics displayed time-dependent immune-related gene expression trajectories, including DOCK2, eventually resembling parental MSPCs. Severe combined immunodeficiency (SCID) patient-derived fibroblasts harboring bi-allelic DOCK2 mutations showed significantly reduced immunomodulatory capacity compared to non-mutated fibroblasts. Conditional DOCK2 siRNA knockdown in iPS-MSPCs and fibroblasts also immediately reduced immunomodulatory capacity. Conclusively, CRISPR/Cas9-mediated DOCK2 knockout in iPS-MSPCs also resulted in significantly reduced immunomodulation, reduced CDC42 Rho family GTPase activation and blunted filopodia formation. These data identify G protein signaling as key element devising stromal cell immunomodulation.


Assuntos
Proteínas Ativadoras de GTPase , Guanina , Humanos , Proteínas Ativadoras de GTPase/genética , RNA Interferente Pequeno , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Imunidade , Imunomodulação
7.
Front Oncol ; 12: 949261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263223

RESUMO

Cellular crosstalk between hematopoietic stem/progenitor cells and the bone marrow (BM) niche is vital for the development and maintenance of myeloid malignancies. These compartments can communicate via bidirectional transfer of extracellular vesicles (EVs). EV trafficking in acute myeloid leukemia (AML) plays a crucial role in shaping the BM microenvironment into a leukemia-permissive niche. Although several EV isolation methods have been developed, it remains a major challenge to define the most accurate and reliable procedure. Here, we tested the efficacy and functional assay compatibility of four different EV isolation methods in leukemia-derived EVs: (1) membrane affinity-based: exoEasy Kit alone and (2) in combination with Amicon filtration; (3) precipitation: ExoQuick-TC; and (4) ultracentrifugation (UC). Western blot analysis of EV fractions showed the highest enrichment of EV marker expression (e.g., CD63, HSP70, and TSG101) by precipitation with removal of overabundant soluble proteins [e.g., bovine serum albumin (BSA)], which were not discarded using UC. Besides the presence of damaged EVs after UC, intact EVs were successfully isolated with all methods as evidenced by highly maintained spherical- and cup-shaped vesicles in transmission electron microscopy. Nanoparticle tracking analysis of EV particle size and concentration revealed significant differences in EV isolation efficacy, with exoEasy Kit providing the highest EV yield recovery. Of note, functional assays with exoEasy Kit-isolated EVs showed significant toxicity towards treated target cells [e.g., mesenchymal stromal cells (MSCs)], which was abrogated when combining exoEasy Kit with Amicon filtration. Additionally, MSC treated with green fluorescent protein (GFP)-tagged exoEasy Kit-isolated EVs did not show any EV uptake, while EV isolation by precipitation demonstrated efficient EV internalization. Taken together, the choice of EV isolation procedure significantly impacts the yield and potential functionality of leukemia-derived EVs. The cheapest method (UC) resulted in contaminated and destructed EV fractions, while the isolation method with the highest EV yield (exoEasy Kit) appeared to be incompatible with functional assays. We identified two methods (precipitation-based ExoQuick-TC and membrane affinity-based exoEasy Kit combined with Amicon filtration) yielding pure and intact EVs, also suitable for application in functional assays. This study highlights the importance of selecting the right EV isolation method depending on the desired experimental design.

8.
Nat Commun ; 13(1): 3456, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35705536

RESUMO

Plasmacytoid and conventional dendritic cells (pDC and cDC) are generated from progenitor cells in the bone marrow and commitment to pDCs or cDC subtypes may occur in earlier and later progenitor stages. Cells within the CD11c+MHCII-/loSiglec-H+CCR9lo DC precursor fraction of the mouse bone marrow generate both pDCs and cDCs. Here we investigate the heterogeneity and commitment of subsets in this compartment by single-cell transcriptomics and high-dimensional flow cytometry combined with cell fate analysis: Within the CD11c+MHCII-/loSiglec-H+CCR9lo DC precursor pool cells expressing high levels of Ly6D and lacking expression of transcription factor Zbtb46 contain CCR9loB220hi immediate pDC precursors and CCR9loB220lo (lo-lo) cells which still generate pDCs and cDCs in vitro and in vivo under steady state conditions. cDC-primed cells within the Ly6DhiZbtb46- lo-lo precursors rapidly upregulate Zbtb46 and pass through a Zbtb46+Ly6D+ intermediate stage before acquiring cDC phenotype after cell division. Type I IFN stimulation limits cDC and promotes pDC output from this precursor fraction by arresting cDC-primed cells in the Zbtb46+Ly6D+ stage preventing their expansion and differentiation into cDCs. Modulation of pDC versus cDC output from precursors by external factors may allow for adaptation of DC subset composition at later differentiation stages.


Assuntos
Antígenos Ly , Células Dendríticas , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Antígeno CD11c/metabolismo , Diferenciação Celular/genética , Células Dendríticas/metabolismo , Proteínas Ligadas por GPI/metabolismo , Camundongos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição
9.
Exp Hematol ; 108: 26-35, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35181392

RESUMO

GATA2 zinc-finger (ZF) mutations are associated with distinct entities of myeloid malignancies. The specific distribution of these mutations points toward different mechanisms of leukemogenesis depending on the ZF domain affected. In this study, we compared recurring somatic mutations in ZF1 and ZF2. All tested ZF mutants disrupted DNA binding in vitro. In transcription assays, co-expression of FOG1 counteracted GATA2-dependent transcriptional activation, while a variable response to FOG1-mediated repression was observed for individual GATA2 mutants. In primary murine bone marrow cells, GATA2 wild-type (WT) expression inhibited colony formation, while this effect was reduced for both mutants A318T (ZF1) and L359V (ZF2) with a shift toward granulopoiesis. In primary human CD34+ bone marrow cells and in the myeloid cell line K562, ectopic expression of GATA2 L359V, but not A318T or G320D, caused a block of erythroid differentiation accompanied by downregulation of GATA1, STAT5B, and PLCG1. Our findings may explain the role of GATA2 L359V during the progression of chronic myeloid leukemia and the collaboration of GATA2 ZF1 alterations with CEBPA double mutations in erythroleukemia.


Assuntos
Fator de Transcrição GATA2 , Leucemia Eritroblástica Aguda , Leucemia Mieloide , Animais , Diferenciação Celular/genética , Fator de Transcrição GATA2/genética , Humanos , Células K562 , Leucemia Eritroblástica Aguda/genética , Camundongos , Mutação , Dedos de Zinco
10.
Nat Commun ; 13(1): 281, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022408

RESUMO

SUMOylation is a post-translational modification of proteins that regulates these proteins' localization, turnover or function. Aberrant SUMOylation is frequently found in cancers but its origin remains elusive. Using a genome-wide transposon mutagenesis screen in a MYC-driven B-cell lymphoma model, we here identify the SUMO isopeptidase (or deconjugase) SENP6 as a tumor suppressor that links unrestricted SUMOylation to tumor development and progression. Notably, SENP6 is recurrently deleted in human lymphomas and SENP6 deficiency results in unrestricted SUMOylation. Mechanistically, SENP6 loss triggers release of DNA repair- and genome maintenance-associated protein complexes from chromatin thereby impairing DNA repair in response to DNA damages and ultimately promoting genomic instability. In line with this hypothesis, SENP6 deficiency drives synthetic lethality to Poly-ADP-Ribose-Polymerase (PARP) inhibition. Together, our results link SENP6 loss to defective genome maintenance and reveal the potential therapeutic application of PARP inhibitors in B-cell lymphoma.


Assuntos
Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Mutação , Sumoilação/fisiologia , Animais , Biomarcadores Tumorais , Carbono-Nitrogênio Liases/genética , Carbono-Nitrogênio Liases/metabolismo , Cromatina , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Feminino , Instabilidade Genômica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional , Sumoilação/efeitos dos fármacos , Sumoilação/genética , Mutações Sintéticas Letais , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Blood ; 139(5): 690-703, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34657154

RESUMO

The cellular mechanisms required to ensure homeostasis of the hematopoietic niche and the ability of this niche to support hematopoiesis upon stress remain elusive. We here identify Wnt5a in Osterix+ mesenchymal progenitor and stem cells (MSPCs) as a critical factor for niche-dependent hematopoiesis. Mice lacking Wnt5a in MSPCs suffer from stress-related bone marrow (BM) failure and increased mortality. Niche cells devoid of Wnt5a show defective actin stress fiber orientation due to an elevated activity of the small GTPase CDC42. This results in incorrect positioning of autophagosomes and lysosomes, thus reducing autophagy and increasing oxidative stress. In MSPCs from patients from BM failure states which share features of peripheral cytopenia and hypocellular BM, we find similar defects in actin stress fiber orientation, reduced and incorrect colocalization of autophagosomes and lysosomes, and CDC42 activation. Strikingly, a short pharmacological intervention to attenuate elevated CDC42 activation in vivo in mice prevents defective actin-anchored autophagy in MSPCs, salvages hematopoiesis and protects against lethal cytopenia upon stress. In summary, our study identifies Wnt5a as a restriction factor for niche homeostasis by affecting CDC42-regulated actin stress-fiber orientation and autophagy upon stress. Our data further imply a critical role for autophagy in MSPCs for adequate support of hematopoiesis by the niche upon stress and in human diseases characterized by peripheral cytopenias and hypocellular BM.


Assuntos
Autofagia , Transtornos da Insuficiência da Medula Óssea/metabolismo , Hematopoese , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Estresse Oxidativo , Proteína Wnt-5a/metabolismo
12.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769079

RESUMO

The IL-6 family cytokine Oncostatin M (OSM) is involved in cell development, growth, hematopoiesis, inflammation, and cancer. Intriguingly, OSM has proliferative and antiproliferative effects depending on the target cell. The molecular mechanisms underlying these opposing effects are not fully understood. Previously, we found OSM upregulation in different myeloproliferative syndromes. However, OSM receptor (OSMR) expression was detected on stromal cells but not the malignant cells themselves. In the present study, we, therefore, investigated the effect of murine OSM (mOSM) on proliferation in stromal and fibroblast cell lines. We found that mOSM impairs the proliferation of bone marrow (BM) stromal cells, whereas fibroblasts responded to mOSM with increased proliferation. When we set out to reveal the mechanisms underlying these opposing effects, we detected increased expression of the OSM receptors OSMR and LIFR in stromal cells. Interestingly, Osmr knockdown and Lifr overexpression attenuated the OSM-mediated effect on proliferation in both cell lines indicating that mOSM affected the proliferation signaling mainly through the OSMR. Furthermore, mOSM induced activation of the JAK-STAT, PI3K-AKT, and MAPK-ERK pathways in OP9 and NIH/3T3 cells with differences in total protein levels between the two cell lines. Our findings offer new insights into the regulation of proliferation by mOSM.


Assuntos
Proliferação de Células , Fibroblastos/citologia , Células-Tronco Mesenquimais/citologia , Subunidade beta de Receptor de Oncostatina M/metabolismo , Oncostatina M/metabolismo , Animais , Linhagem Celular , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células NIH 3T3 , Transdução de Sinais
13.
Front Cell Dev Biol ; 9: 705410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368155

RESUMO

The bone marrow (BM) microenvironment, also called the BM niche, is essential for the maintenance of fully functional blood cell formation (hematopoiesis) throughout life. Under physiologic conditions the niche protects hematopoietic stem cells (HSCs) from sustained or overstimulation. Acute or chronic stress deregulates hematopoiesis and some of these alterations occur indirectly via the niche. Effects on niche cells include skewing of its cellular composition, specific localization and molecular signals that differentially regulate the function of HSCs and their progeny. Importantly, while acute insults display only transient effects, repeated or chronic insults lead to sustained alterations of the niche, resulting in HSC deregulation. We here describe how changes in BM niche composition (ecosystem) and structure (remodeling) modulate activation of HSCs in situ. Current knowledge has revealed that upon chronic stimulation, BM remodeling is more extensive and otherwise quiescent HSCs may be lost due to diminished cellular maintenance processes, such as autophagy, ER stress response, and DNA repair. Features of aging in the BM ecology may be the consequence of intermittent stress responses, ultimately resulting in the degeneration of the supportive stem cell microenvironment. Both chronic stress and aging impair the functionality of HSCs and increase the overall susceptibility to development of diseases, including malignant transformation. To understand functional degeneration, an important prerequisite is to define distinguishing features of unperturbed niche homeostasis in different settings. A unique setting in this respect is xenotransplantation, in which human cells depend on niche factors produced by other species, some of which we will review. These insights should help to assess deviations from the steady state to actively protect and improve recovery of the niche ecosystem in situ to optimally sustain healthy hematopoiesis in experimental and clinical settings.

14.
Leuk Lymphoma ; 62(11): 2679-2689, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33999745

RESUMO

Molecular targets of tyrosine kinase inhibitors are not restricted to the B-cell compartment but also regulate functions in the tumor microenvironment. Increasing evidence suggests that B-cell receptor-associated kinases like protein kinase C (PKC)-ß is essential for the formation of a microenvironment supporting leukemic growth. Here we describe the effect of Idelalisib on the PKCß/NF-κB and Notch pathway in stromal cells upon contact to primary chronic lymphocytic leukemia cells (CLL). There is no Idelalisib-dependent regulation of the Notch expression in stromal cells, whereas Idelalisib induces PKCß expression and activates the canonical NF-κB pathway. Idelalisib deregulates important immune-modulatory proteins in activated stromal cells, which might provoke the patient's side effects. Additionally, we established a 3D-stroma/leukemia model, that can give us a more defined look into the communication between tumor and stromal cells than standard cell cultures. This opens up the possibility to improve therapies, especially in the context of minimal-residual disease.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Purinas/farmacologia , Quinazolinonas/farmacologia , Células Estromais , Microambiente Tumoral
15.
Sci Rep ; 11(1): 5944, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723276

RESUMO

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.


Assuntos
Adipogenia , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/metabolismo , Síndromes Mielodisplásicas/genética , Adipogenia/genética , Biomarcadores , Medula Óssea/metabolismo , Medula Óssea/patologia , Estudos de Casos e Controles , Diferenciação Celular/genética , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/patologia , Células-Tronco Mesenquimais/citologia , Síndromes Mielodisplásicas/patologia
16.
iScience ; 24(2): 102120, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665548

RESUMO

Classically, hematopoietic stem cell (HSC) differentiation is assumed to occur via progenitor compartments of decreasing plasticity and increasing maturity in a specific, hierarchical manner. The classical hierarchy has been challenged in the past by alternative differentiation pathways. We abstracted experimental evidence into 10 differentiation hierarchies, each comprising 7 cell type compartments. By fitting ordinary differential equation models with realistic waiting time distributions to time-resolved data of differentiating HSCs from 10 healthy human donors, we identified plausible lineage hierarchies and rejected others. We found that, for most donors, the classical model of hematopoiesis is preferred. Surprisingly, multipotent lymphoid progenitor differentiation into granulocyte-monocyte progenitors is plausible in 90% of samples. An in silico analysis confirmed that, even for strong noise, the classical model can be identified robustly. Our computational approach infers differentiation hierarchies in a personalized fashion and can be used to gain insights into kinetic alterations of diseased hematopoiesis.

17.
Haematologica ; 106(10): 2633-2640, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33543864

RESUMO

Hematopoietic stem cell self-renewal, proliferation, and differentiation are independently regulated by intrinsic as well as extrinsic mechanisms. We previously demonstrated that murine proliferation of hematopoietic stem cells is supported in serum-free medium supplemented with two growth factors, stem cell factor and interleukin 11. The survival of hematopoietic stem cells is additionally improved by supplementing this medium with two more growth factors, neural growth factor and collagen 1 (four growth factors) or serum-free medium conditioned by the hematopoietic stem cell-supportive stromal UG26-1B6 cells1. Here, we describe a robust and versatile alternative source of conditioned medium from mouse embryonic fibroblasts. We found that this conditioned medium supports survival and phenotypical identity of hematopoietic stem cells, as well as cell cycle entry in single cell cultures of CD34- CD48- CD150+ Lineage- SCA1+ KIT+ cells supplemented with two growth factors. Strikingly, in comparison with cultures in serum-free medium with four growth factors, conditioned medium from mouse embryonic fibroblasts increases the numbers of proliferating clones and the number of Lineage- SCA1+ KIT+ cells, both with two and four growth factors. In addition, conditioned medium from mouse embryonic fibroblasts supports self-renewal in culture of cells with short- and long-term hematopoiesis-repopulating ability in vivo. These findings identify conditioned medium from mouse embryonic fibroblasts as a robust alternative serumfree source of factors to maintain self-renewal of in vivo-repopulating hematopoetic stem cells in culture.


Assuntos
Fibroblastos , Células-Tronco Hematopoéticas , Animais , Diferenciação Celular , Divisão Celular , Células Cultivadas , Hematopoese , Camundongos
18.
Immun Inflamm Dis ; 9(2): 521-532, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33592138

RESUMO

In this study, we investigated the influence of the loss of cathepsin K (Ctsk) gene on the hematopoietic system in vitro and in vivo. We found that cultures with lineage- SCA1+ KIT+ (LSK) cells on Ctsk deficient stromal cells display reduced colony formation and proliferation, with increased differentiation, giving rise to repopulating cells with reduced ability to repopulate the donor LSKs and T cell compartments in the bone marrow (BM). Subsequent in vivo experiments showed impairment of lymphocyte numbers, but, gross effects on early hematopoiesis or myelopoiesis were not found. Most consistently in in vivo experimental settings, we found a significant reduction of (donor) T cell numbers in the BM. Lymphocyte deregulation is also found in transplantation experiments, which revealed that Ctsk is required for optimal regeneration of small populations of T cells, particularly in the BM, but also of thymic B cells. Interestingly, cell nonautonomous Ctsk regulates both B and T cell numbers, but T cell numbers in the BM require an additional autonomous Ctsk-dependent process. Thus, we show that Ctsk is required for the maintenance of hematopoietic stem cells in vitro, but in vivo, Ctsk deficiency most strongly affects lymphocyte homeostasis, particularly of T cells in the BM.


Assuntos
Medula Óssea , Linfócitos T , Catepsina K/genética , Células-Tronco Hematopoéticas , Contagem de Linfócitos
19.
Stem Cells ; 39(6): 819-830, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33539629

RESUMO

Survival of chronic lymphocytic leukemia (CLL) cells critically depends on the support of an adapted and therefore appropriate tumor microenvironment. Increasing evidence suggests that B-cell receptor-associated kinases such as protein kinase C-ß (PKCß) or Lyn kinase are essential for the formation of a microenvironment supporting leukemic growth. Here, we describe the impact of PKCß on the glucose metabolism in bone marrow stromal cells (BMSC) upon CLL contact. BMSC get activated by CLL contact expressing stromal PKCß that diminishes mitochondrial stress and apoptosis in CLL cells by stimulating glucose uptake. In BMSC, the upregulation of PKCß results in increased mitochondrial depolarization and leads to a metabolic switch toward oxidative phosphorylation. In addition, PKCß-deficient BMSC regulates the expression of Hnf1 promoting stromal insulin signaling after CLL contact. Our data suggest that targeting PKCß and the glucose metabolism of the leukemic niche could be a potential therapeutic strategy to overcome stroma-mediated drug resistance.


Assuntos
Células da Medula Óssea/metabolismo , Glucose/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteína Quinase C beta/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Proteína Quinase C beta/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Microambiente Tumoral/efeitos dos fármacos
20.
Front Immunol ; 12: 797432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003122

RESUMO

Innate lymphoid cells (ILCs) and in particular ILC3s have been described to be vital for mucosal barrier functions and homeostasis within the gastrointestinal (GI) tract. Importantly, IL-22-secreting ILC3 have been implicated in the control of inflammatory bowel disease (IBD) and were shown to reduce the incidence of graft-versus-host disease (GvHD) as well as the risk of transplant rejection. Unfortunately, IL-22-secreting ILC3 are primarily located in mucosal tissues and are not found within the circulation, making access to them in humans challenging. On this account, there is a growing desire for clinically applicable protocols for in vitro generation of effector ILC3. Here, we present an approach for faithful generation of functionally competent human ILC3s from cord blood-derived CD34+ hematopoietic progenitors on layers of human mesenchymal stem cells (MSCs) generated in good manufacturing practice (GMP) quality. The in vitro-generated ILC3s phenotypically, functionally, and transcriptionally resemble bona fide tissue ILC3 with high expression of the transcription factors (TF) RorγT, AHR, and ID2, as well as the surface receptors CD117, CD56, and NKp44. Importantly, the majority of ILC3 belonged to the desired effector subtype with high IL-22 and low IL-17 production. The protocol thus combines the advantages of avoiding xenogeneic components, which were necessary in previous protocols, with a high propensity for generation of IL-22-producing ILC3. The present approach is suitable for the generation of large amounts of ILC3 in an all-human system, which could facilitate development of clinical strategies for ILC3-based therapy in inflammatory diseases and cancer.


Assuntos
Trato Gastrointestinal/fisiologia , Transplante de Células-Tronco Hematopoéticas , Interleucinas/metabolismo , Linfócitos/imunologia , Células-Tronco Mesenquimais/fisiologia , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Hematopoese , Humanos , Imunidade Inata , Interleucina-17/metabolismo , Transfusão de Linfócitos , Nicho de Células-Tronco , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA