Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(10): e20761, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37860528

RESUMO

Every third patient with intracranial meningioma develops seizures of poorly understood etiology. Tumor and peritumoral edema may exert mechanical pressure on the cortex that may affect mechano-gated potassium channels - KCNK2 and KCNK4. These channels regulate neuron excitability and have been related to seizures in some other conditions. The objective of the present study was to explore a potential relation between the levels of these proteins in tumor tissue and adjacent cortex and seizures development. The study included 19 meningioma patients that presented one or more preoperative seizures and 24 patients with no seizures. Tissue samples were collected in the course of surgical removal of the meningioma. Postoperative seizure freedom was achieved in 11 out of 19 patients. The relative level of KCNK2 in the cortical tissue was lower in patients with preoperative seizures. On the other hand, cortical tissue level of KCNK4 was higher in patients that became seizure-free after the surgery. In addition, relative levels of KCNK4 in the cortical and tumor tissue appear to be lowered by the treatment with anti-seizure medication levetiracetam. These results imply that KCNK2 and KCNK4 may be involved in the development of meningioma-related seizures and may represent promising therapeutic targets.

2.
J Exp Bot ; 74(3): 1107-1122, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36453904

RESUMO

Metabolism of metals in microalgae and adaptation to metal excess are of significant environmental importance. We report a three-step mechanism that the green microalga Chlorella sorokiniana activates during the acquisition of and adaptation to manganese (Mn), which is both an essential trace metal and a pollutant of waters. In the early stage, Mn2+ was mainly bound to membrane phospholipids and phosphates in released mucilage. The outer cell wall was reorganized and lipids were accumulated, with a relative increase in lipid saturation. Intracellular redox settings were rapidly altered in the presence of Mn excess, with increased production of reactive oxygen species that resulted in lipid peroxidation and a decrease in the concentration of thiols. In the later stage, Mn2+ was chelated by polyphosphates and accumulated in the cells. The structure of the inner cell wall was modified and the redox milieu established a new balance. Polyphosphates serve as a transient Mn2+ storage ligand, as proposed previously. In the final stage, Mn was stored in multivalent Mn clusters that resemble the structure of the tetramanganese-calcium core of the oxygen-evolving complex. The present findings elucidate the bioinorganic chemistry and metabolism of Mn in microalgae, and may shed new light on water-splitting Mn clusters.


Assuntos
Chlorella , Microalgas , Manganês/metabolismo , Chlorella/metabolismo , Microalgas/metabolismo , Metais/metabolismo
3.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012287

RESUMO

The effects of a fructose-rich diet and chronic stress on copper metabolism in the kidneys are still understudied. We investigated whether fructose and/or chronic unpredictable stress modulate copper metabolism in a way that affects redox homeostasis, thus contributing to progression of metabolic disturbances in the kidney. We determined protein level of copper transporters, chaperones, and cuproenzymes including cytochrome c oxidase, as well as antioxidant enzymes function in the kidneys of male Wistar rats subjected to 20% liquid fructose supplementation and/or chronic stress. Liquid fructose supplementation increased level of copper chaperone of superoxide dismutase and decreased metallothionein level, while rendering the level of copper importer and copper chaperones involved in copper delivery to mitochondria and trans Golgi network unaffected. Stress had no effect on renal copper metabolism. The activity and expression of renal antioxidant enzymes remained unaltered in all experimental groups. In conclusion, fructose, independently of stress, decreased renal copper level, and modulated renal copper metabolism as to preserve vital cellular function including mitochondrial energy production and antioxidative defense, at the expense of intracellular copper storage.


Assuntos
Antioxidantes , Frutose , Animais , Antioxidantes/farmacologia , Cobre/farmacologia , Frutose/metabolismo , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar
4.
PLoS One ; 15(6): e0234253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555583

RESUMO

Oxidative status of maternal blood represents an important parameter of pregnancy that is involved in both, regulation of physiological processes and (if significantly altered) development of different pregnancy complications. Inherited thrombophilias represent genetic disorders that increase the risk of thromboembolism in pregnancy. Little is known about the impact of thrombophilia on the oxidative status of maternal blood. In this study, we analyzed oxidative status of blood of 56 women with pregnancies burdened by inherited thrombophilias. The status was established at three different trimesters using biochemical assays and electrochemical measurements, and it was compared to 10 age- and trimester-matching controls. Activities of superoxide dismutase, catalase, and glutathione reductase in the 1st and the 2nd trimester of thrombophilic pregnancy were lower than controls. Also, there was less oxidation in the plasma, according to higher concentration of reduced thiols and lower oxidation-reduction potential. Therefore, it appears that thrombophilic mothers do not experience oxidative stress in the circulation in the first two trimesters. However, the rise in GPx, GR and SOD activities in the 3rd trimester of thrombophilic pregnancy implies that the risk of oxidative stress is increased during the late pregnancy. These results are important for developing antioxidative treatment that could tackle thrombophilia-related pregnancy complications.


Assuntos
Complicações Hematológicas na Gravidez/sangue , Complicações Hematológicas na Gravidez/metabolismo , Trombofilia/sangue , Trombofilia/metabolismo , Adulto , Estudos de Coortes , Eritrócitos/enzimologia , Feminino , Glutationa Peroxidase/sangue , Humanos , Oxirredução , Oxirredutases/sangue , Gravidez , Complicações Hematológicas na Gravidez/enzimologia , Trombofilia/enzimologia
5.
Free Radic Biol Med ; 148: 123-127, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31911148

RESUMO

Upon release in response to stress, epinephrine (Epi) may interact with labile iron pool in human plasma with potentially important (patho)physiological consequences. We have shown that Epi and Fe3+ build stable 1:1 high-spin bidentate complex at physiological pH, and that Epi does not undergo degradation in the presence of iron. However, the interactions of Epi with the more soluble Fe2+, and the impact of iron on biological activity of Epi are still not known. Herein we showed that Epi and Fe2+ build colorless complex which is stable under anaerobic conditions. In the presence of O2, Epi promoted the oxidation of Fe2+ and the formation of Epi-Fe3+ complex. Cyclic voltammetry showed that mid-point potential of Epi-Fe2+ complex is very low (-582 mV vs. standard hydrogen electrode), which explains catalyzed oxidation of Fe2+. Next, we examined the impact of iron binding on biological performance of Epi using patch clamping in cell culture with constitutive expression of adrenergic receptors. Epi alone evoked an increase of outward currents, whereas Epi in the complex with Fe3+ did not. This implies that the binding of Epi to adrenergic receptors and their activation is prevented by the formation of complex with iron. Pro-oxidative activity of Epi-Fe2+ complex may represent a link between chronic stress and cardiovascular problems. On the other hand, labile iron could serve as a modulator of biological activity of ligands. Such interactions may be important in human pathologies that are related to iron overload or deficiency.


Assuntos
Quelantes , Ferro , Epinefrina , Humanos , Oxirredução , Receptores Adrenérgicos
6.
Antioxid Redox Signal ; 28(17): 1570-1575, 2018 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-29113448

RESUMO

The monitoring of progression in amyotrophic lateral sclerosis (ALS) relies on clinical outcome measures that take months to interpret, such as revised ALS functional rating scale (ALSFRS-R) score, with no approved biomarkers. A number of clinical studies have documented the involvement of oxidative stress in ALS pathology. Pertinent to this, we propose to evaluate oxidation-reduction potential (ORP) of cerebrospinal fluid (CSF) as a potential indicator of ALS progression. The case-control study included 24 patients with neurological non-neurodegenerative disorders (controls) and 82 ALS patients with different degrees of disease (ALSFRS-R score: 21-47). ORP was significantly higher in ALS patients than controls. It was not dependent on age or gender. A strong negative correlation was found between ORP and ALSFRS-R score for all patients and patients with spinal onset. In other words, ORP increased with ALS progression. No correlation was found for the subset of patients with bulbar onset, most likely because of the physical distance between neurodegenerative loci and the site of CSF collection. These results lead to the hypothesis that ORP of CSF has a potential as monitoring biomarker in ALS, particularly in the cohort of patients with spinal onset. Antioxid. Redox Signal. 28, 1570-1575.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/metabolismo , Líquido Cefalorraquidiano/metabolismo , Adulto , Idoso , Biomarcadores/análise , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Adulto Jovem
7.
Metallomics ; 9(2): 141-148, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28124054

RESUMO

The loss of metal homeostasis has been implicated in the pathophysiology of mesial temporal lobe epilepsy associated with hippocampal sclerosis (mTLE-HS). Here we applied laser ablation inductively coupled plasma mass spectrometry imaging to establish the spatial distribution of Zn, Fe, Cu and Mn in coronal sections of hippocampi of four patients with drug-resistant mTLE-HS who underwent amygdalohippocampectomy. Detailed maps of the metal concentrations in the different morphological areas/layers were built and analyzed. The highest level of Zn (>20 µg g-1) was found in mossy fiber-rich regions - cornu ammonis field 4 (CA4), gyrus dentatus, and CA3. The distribution of Fe appears to reflect the routes of the main intrahippocampal blood vessels. The highest concentrations of Cu (>10 µg g-1) and Mn (>15 µg g-1) were observed in regions/layers with neuron somata - subiculum, CA4, gyrus dentatus, and stratum pyramidale (SPy) in CA1 and CA2. Alveus and other regions with axons and dendrites generally showed lower levels of Zn, Cu, and Mn. The Cu concentration was decreased in the areas of total neuronal loss in SPy in CA1 (9.73 ± 0.91 µg g-1), compared to the subiculum (13.32 ± 1.29 µg g-1; p = 0.043). The Cu and Mn concentrations correlated positively with neuron density in the SPy in CA1 (R = 0.629, p < 0.001; and R = 0.391, p = 0.004). These results provide a deeper insight into hippocampal metabolism of metals, and pave the road for identifying the components of the mechanism of epileptogenesis among Cu and Mn transporters and metalloproteins.


Assuntos
Epilepsia do Lobo Temporal/complicações , Giro do Cíngulo/patologia , Hipocampo/patologia , Metais/análise , Esclerose/patologia , Adulto , Feminino , Giro do Cíngulo/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Esclerose/complicações , Esclerose/metabolismo , Adulto Jovem
8.
Anal Biochem ; 480: 6-10, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25862081

RESUMO

We have developed a simple one-step 30-min method for fluorescent visualization of proteins in native and sodium dodecyl sulfate polyacrylamide gel electrophoresis (PAGE) gels. The method is based on formation of strong fluorophores via potassium ferricyanide-provoked oxidation of tryptophan (Trp). Following PAGE, gels are soaked in water solution of potassium ferricyanide (100 mM) and NaOH (1 M) and are kept in the dark for 30 min. Gels are then transferred to water and scanned. The sensitivity of the method was slightly lower compared with standard Coomassie Brilliant Blue (CBB) staining. The method can be useful when rapid acquisition of data is of the essence. After preview, gels can be post-stained using the CBB protocol for further analysis. The intensity of fluorescence is dependent on Trp number, so the protocol might find application in the quantification of Trp residues as illustrated here. Importantly, there is room for improvement of the method. Namely, according to excitation-emission matrix analysis of stained protein bands, maximal fluorescence intensity (at 345/460 nm) was 3.5-fold higher compared with the settings that were available on a commercial imager (395/525 nm). As a supplement, we present an upgrade of the previously described method for in-gel detection of non-heme iron-binding proteins that also employs potassium ferricyanide.


Assuntos
Eletroforese em Gel de Poliacrilamida , Fluorescência , Géis/química , Proteínas/química , Dodecilsulfato de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA