Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38726645

RESUMO

Background: Nosocomial wound infection with Pseudomonas aeruginosa (PA) is a serious complication often responsible for septic mortality of burn patients. High-intensity antimicrobial blue light (aBL) treatment may represent an alternative therapy for PA infections. Methods: Antibacterial effects of an light-emitting diode (LED) array (450-460 nm; 300 mW/cm2; 15/30 min; 270/540J/cm2) against PA were determined by suspension assay, biofilm assay, and a human skin wound model and compared with 15-min topically applied 3% citric acid (CA) and wound irrigation solution (Prontosan®; PRT). Results: The aBL reduced the bacterial number (2.51-3.56 log10 CFU/mL), whereas PRT or CA treatment achieved a 4.64 or 6.60 log10 CFU/mL reduction in suspension assays. The aBL reduced biofilm formation by 60%-66%. PRT or CA treatment showed reductions by 25% or 13%. In this study, aBL reduced bacterial number in biofilms (1.30-1.64 log10 CFU), but to a lower extent than PRT (2.41 log10 CFU) or CA (2.48 log10 CFU). In the wound skin model, aBL (2.21-2.33 log10 CFU) showed a bacterial reduction of the same magnitude as PRT (2.26 log10 CFU) and CA (2.30 log10 CFU). Conclusions: The aBL showed a significant antibacterial efficacy against PA and biofilm formation in a short time. However, a clinical application of aBL in wound therapy requires effective active skin cooling and eye protection, which in turn may limit clinical implementation.

2.
Antibiotics (Basel) ; 13(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38247601

RESUMO

Since burn wound infections caused by Pseudomonas aeruginosa (PA) lead to major complications and sepsis, this study evaluates the antimicrobial efficacy of the wound irrigation solutions Prontosan (PRT), Lavanox (LAV), citric acid (CA) and mafenide acetate (MA) using microbiology assays and an ex vivo skin wound model. In suspension assays, all the solutions showed significant reductions in bacterial number (log10 reduction: CA 5.77; LAV 4.91; PRT 4.74; MA 1.23). The biofilm assay revealed that PRT and LAV reduced biofilm formation by ~25% after a 15 min treatment, while PRT was most effective after a 24 h treatment (~68%). The number of PA in biofilms measured directly after a 15 min treatment was reduced most effectively with CA and LAV (log10 reductions ~2.5), whereas after a 24 h treatment, all solutions achieved only 1.36-1.65 log10 reductions. In the skin wound model, PRT and LAV provided the highest bacterial reduction after a 15 min treatment (log10 reduction 1.8-1.9), while MA was more effective after a 22 h treatment (log10 reduction 3.6). The results demonstrated the antimicrobial efficacy of all solutions against PA. Further investigation is needed to explore the potential clinical applications of a combination or alternating use of these solutions for infection prophylaxis and treatment of wound infections caused by PA.

3.
Biomedicines ; 11(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37892967

RESUMO

Following the enzymatic debridement of deep dermal burns, the choice of wound dressing is crucial for providing an adequate environment and suitable conditions for rapid wound healing. As Suprathel® and fatty gauze (Jelonet®) are the most commonly used dressings in burn centers, the aim of this study is to compare Suprathel® and Jelonet® in the treatment of deep dermal burns after enzymatic debridement with respect to wound healing, patient comfort, and pain. A total of 23 patients with deep dermal burns of the hand or foot (mean total body surface area of 4.31%) were included in this prospective, unicentric, open, comparative, and intra-individual clinical study. After enzymatic debridement, wounds were divided into two areas: one was treated with Suprathel® and the other with Jelonet®. Suprathel® remained on the wounds without dressing changes while Jelonet® was regularly changed. Wound healing, infection, bleeding, exudation, time for dressing changes, and pain were documented (from days 2 to 48) after injury. Satisfactory results were obtained in 22 cases; only one patient had to undergo a second debridement followed by skin grafting. No significant difference in time to final wound healing could be observed (18-19 d). Patients reported significantly less pain during the dressing changes for Suprathel® compared to Jelonet®. Furthermore, the wound areas treated with Suprathel® showed significantly less exudation and bleeding. Wound infections rarely occurred in both groups. In conclusion, the authors found that both wound dressings could be used to achieve safe and rapid wound healing after the enzymatic debridement of deep dermal burns of the hands and feet. However, compared to Jelonet®, Suprathel® showed superior results in terms of patient comfort and pain reduction.

4.
Biomedicines ; 11(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238910

RESUMO

Wound infection with Pseudomonas aeruginosa (PA) is a serious complication and is responsible for higher rates of mortality in burn patients. Because of the resistance of PA to many antibiotics and antiseptics, an effective treatment is difficult. As a possible alternative, cold atmospheric plasma (CAP) can be considered for treatment, as antibacterial effects are known from some types of CAP. Hence, we preclinically tested the CAP device PlasmaOne and found that CAP was effective against PA in various test systems. CAP induced an accumulation of nitrite, nitrate, and hydrogen peroxide, combined with a decrease in pH in agar and solutions, which could be responsible for the antibacterial effects. In an ex vivo contamination wound model using human skin, a reduction in microbial load of about 1 log10 level was observed after 5 min of CAP treatment as well as an inhibition of biofilm formation. However, the efficacy of CAP was significantly lower when compared with commonly used antibacterial wound irrigation solutions. Nevertheless, a clinical use of CAP in the treatment of burn wounds is conceivable on account of the potential resistance of PA to common wound irrigation solutions and the possible wound healing-promoting effects of CAP.

5.
Biomedicines ; 11(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238913

RESUMO

The micro-scaled Atmospheric Pressure Plasma Jet (µAPPJ) is operated with low carrier gas flows (0.25-1.4 slm), preventing excessive dehydration and osmotic effects in the exposed area. A higher yield of reactive oxygen or nitrogen species (ROS or RNS) in the µAAPJ-generated plasmas (CAP) was achieved, due to atmospheric impurities in the working gas. With CAPs generated at different gas flows, we characterized their impact on physical/chemical changes of buffers and on biological parameters of human skin fibroblasts (hsFB). CAP treatments of buffer at 0.25 slm led to increased concentrations of nitrate (~352 µM), hydrogen peroxide (H2O2; ~124 µM) and nitrite (~161 µM). With 1.40 slm, significantly lower concentrations of nitrate (~10 µM) and nitrite (~44 µM) but a strongly increased H2O2 concentration (~1265 µM) was achieved. CAP-induced toxicity of hsFB cultures correlated with the accumulated H2O2 concentrations (20% at 0.25 slm vs. ~49% at 1.40 slm). Adverse biological consequences of CAP exposure could be reversed by exogenously applied catalase. Due to the possibility of being able to influence the plasma chemistry solely by modulating the gas flow, the therapeutic use of the µAPPJ represents an interesting option for clinical use.

6.
Life (Basel) ; 13(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36836688

RESUMO

Hypertrophic scarring in burn wounds is caused by overactive fibroblasts and myofibroblasts. Blue light reveals wavelength- and dose-dependent antibacterial and antiproliferative effects and may serve as a therapeutic option against wound infection and fibrotic conditions. Therefore, we evaluated in this study the effects of single and multiple irradiations with blue light at 420 nm (BL420) on the intracellular ATP concentration, and on the viability and proliferation of the human skin fibroblast (HDFs). In addition, possible BL420-induced effects on the catalase expression and differentiation were assessed by immunocytochemical staining and western blot analyses. Furthermore, we used RNA-seq analyses to identify BL420-affected genes. We found that BL420 induced toxicity in HDFs (up to 83%; 180 J/cm2). A low dose of 20 J/cm2 reduced the ATP concentration by ~50%. Multiple irradiations (4 × 20 J/cm2) inhibited proliferation without visible toxicity and reduced catalase protein expression by ~37% without affecting differentiation. The expression of about 300 genes was significantly altered. Many downregulated genes have functions in cell division/mitosis. BL420 can strongly influence the fibroblast physiology and has potential in wound therapy. However, it is important to consider the possible toxic and antiproliferative effects, which could potentially lead to impaired wound healing and reduced scar breaking strength.

7.
Biomedicines ; 11(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830781

RESUMO

Cold atmospheric plasmas (CAPs) generated by dielectric barrier discharge (DBD), particularly those containing higher amounts of nitric oxide (NO) or NO derivates (NOD), are attracting increasing interest in medical fields. In the present study, we, for the first time, evaluated DBD-CAP-induced NOD accumulation and therapeutically relevant NO release in calcified bone tissue. This knowledge is of great importance for the development of new therapies against bacterial-infectious complications during bone healing, such as osteitis or osteomyelitis. We found that by modulating the power dissipation in the discharge, it is possible (1) to significantly increase the uptake of NODs in bone tissue, even into deeper regions, (2) to significantly decrease the pH in CAP-exposed bone tissue, (3) to induce a long-lasting and modulable NO production in the bone samples as well as (4) to significantly protect the treated bone tissue against bacterial contaminations, and to induce a strong bactericidal effect in bacterially infected bone samples. Our results strongly suggest that the current DBD technology opens up effective NO-based therapy options in the treatment of local bacterial infections of the bone tissue through the possibility of a targeted modulation of the NOD content in the generated CAPs.

8.
Med Sci (Basel) ; 11(1)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36810483

RESUMO

The combination of adipose-derived stem cells (ASCs) and dermal scaffolds has been shown to be an approach with high potential in soft tissue reconstruction. The addition of dermal templates to skin grafts can increase graft survival through angiogenesis, improve regeneration and healing time, and enhance the overall appearance. However, it remains unknown whether the addition of nanofat-containing ASCs to this construct could effectively facilitate the creation of a multi-layer biological regenerative graft, which could possibly be used for soft tissue reconstruction in the future in a single operation. Initially, microfat was harvested using Coleman's technique, then isolated through the strict protocol using Tonnard's technique. Finally, centrifugation, emulsification, and filtration were conducted to seed the filtered nanofat-containing ASCs onto Matriderm for sterile ex vivo cellular enrichment. After seeding, a resazurin-based reagent was added, and the construct was visualized using two-photon microscopy. Within 1 h of incubation, viable ASCs were detected and attached to the top layer of the scaffold. This experimental ex vivo note opens more dimensions and horizons towards the combination of ASCs and collagen-elastin matrices (i.e., dermal scaffolds) as an effective approach in soft tissue regeneration. The proposed multi-layered structure containing nanofat and dermal template (Lipoderm) may be used, in the future, as a biological regenerative graft for wound defect reconstruction and regeneration in a single operation and can also be combined with skin grafts. Such protocols may optimize the skin graft results by creating a multi-layer soft tissue reconstruction template, leading to more optimal regeneration and aesthetic outcomes.


Assuntos
Procedimentos de Cirurgia Plástica , Cirurgia Plástica , Tecido Adiposo/transplante , Adipócitos/transplante , Cicatrização
9.
Medicina (Kaunas) ; 58(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363504

RESUMO

Background and Objectives: Scar formation after burn trauma has a significant impact on the quality of life of burn patients. Hypertrophic scars or keloids can be very distressing to patients due to potential pain, functional limitations, or hyper- or hypopigmentation. In a previous study comparing Suprathel® and the new and cheaper dressing epicitehydro®, we were able to show that pain reduction, exudation, and time until wound-healing of partial-thickness burn wounds were similar, without any documented infections. No study exists that objectively measures and compares skin and scar quality after treatment with Suprathel® and epicitehydro® at present. Materials and Methods: In this study, the scar quality of 20 patients who had been treated with Suprathel® and epicitehydro® was objectively assessed using the Cutometer®, Mexameter®, and Tewameter®, as well as subjectively with the Patient and Observer Scar Assessment Scale, 3, 6, and 12 months after burn injury. Results: In all performed measurements, no significant differences were detected in scar formation after treatment of partial-thickness burn wounds with the two dressings. Conclusions: Both the newer and less expensive wound-dressing epicitehydro® and the well-known wound-dressing Suprathel® resulted in stable wound closure and showed good cosmetic results in the follow-up examinations.


Assuntos
Queimaduras , Cicatriz , Humanos , Cicatriz/etiologia , Transplante de Pele/métodos , Qualidade de Vida , Queimaduras/complicações , Queimaduras/terapia , Bandagens , Dor
10.
Photobiomodul Photomed Laser Surg ; 40(12): 800-809, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306523

RESUMO

Objective: To determine effective treatment strategies against bacterial infections of burn wounds with Pseudomonas aeruginosa, we tested different treatment regimens with antibacterial blue light (BL). Background: Infections of burn wounds are serious complications and require effective and pathogen-specific therapy. Hereby, infections caused by P. aeruginosa pose a particular challenge in clinical practice due to its resistance to many antibiotics and topical antiseptics. Methods: LED-based light sources (450-460 nm) with different intensities and treatment times were used. Antibacterial effects against P. aeruginosa were determined by colony-forming unit (CFU) assays, human skin wound models, and fluorescence imaging. Results: In suspension assays, BL (2 h, 40 mW/cm2, 288 J/cm2) reduced bacterial number (>5 log10 CFU/mL). Applying 144 J/cm2, using 40 mW/cm2 for 1 h was more effective (>4 log10 CFU) than using 20 mW/cm2 for 2 h (>1.5 log10 CFU). BL with low irradiance (24 h, 3.5 mW/cm2, 300 J/cm2) only revealed bacterial reduction in thin bacteria-containing medium layers. In infected in vitro skin wounds only BL irradiation (2 h, 40 mW/cm2, 288 J/cm2) exerted a significant antimicrobial efficacy (2.94 log10 CFU/mL). Conclusions: BL treatment may be an effective therapy for P. aeruginosa-infected wounds to avoid radical surgical debridement. However, a significant antibacterial efficacy can only be achieved with higher irradiances and longer treatment times (min. 40 mW/cm2; >1 h), which cannot be easily integrated into regular clinical treatment protocols, for example, during a dressing change. Further studies are necessary to establish BL therapy for infected burns among tissue compatibility and interactions with previous therapeutic agents.


Assuntos
Queimaduras , Lesões dos Tecidos Moles , Infecção dos Ferimentos , Humanos , Pseudomonas aeruginosa/efeitos da radiação , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Luz , Queimaduras/complicações , Queimaduras/terapia , Queimaduras/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
11.
Biomedicines ; 10(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36140225

RESUMO

The generation of nitric oxide (NO) in the skin plays a critical role in wound healing and the response to several stimuli, such as UV exposure, heat, infection, and inflammation. Furthermore, in the human body, NO is involved in vascular homeostasis and the regulation of blood pressure. Physiologically, a family of enzymes termed nitric oxide synthases (NOS) generates NO. In addition, there are many methods of non-enzymatic/NOS-independent NO generation, e.g., the reduction of NO derivates (NODs) such as nitrite, nitrate, and nitrosylated proteins under certain conditions. The skin is the largest and heaviest human organ and contains a comparatively high concentration of these NODs; therefore, it represents a promising target for many therapeutic strategies for NO-dependent pathological conditions. In this review, we give an overview of how the cutaneous NOD stores can be targeted and modulated, leading to a further accumulation of NO-related compounds and/or the local and systemic release of bioactive NO, and eventually, NO-related physiological effects with a potential therapeutical use for diseases such as hypertension, disturbed microcirculation, impaired wound healing, and skin infections.

12.
Photobiomodul Photomed Laser Surg ; 39(5): 339-348, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33961502

RESUMO

Objective: To determine effective treatment strategies against bacterial infections of chronic wounds, we tested different blue light (BL)-emitting light-emitting diode arrays (420, 455, and 480 nm) against wound pathogens and investigated in parallel BL-induced toxic effects on human dermal fibroblasts. Background: Wound infection is a major factor for delayed healing. Infections with Pseudomonas aeruginosa and Staphylococcus aureus are clinically relevant caused by their ability of biofilm formation and their quickly growing antibiotics resistance. BL has demonstrated antimicrobial properties against various microbes. Methods: Determination of antibacterial and cell toxic effects by colony-forming units (CFUs)/biofilm/cell viability assays, and live cell imaging. Results: A single BL irradiation (180 J/cm2), of P. aeruginosa at both 420 and 455 nm resulted in a bacterial reduction (>5 log10 CFU), whereas 480 nm revealed subantimicrobial effects (2 log10). All tested wavelengths of BL also revealed bacteria reducing effects on Staphylococcus epidermidis and Escherichia coli (maximum 1-2 log10 CFU) but not on S. aureus. Dealing with biofilms, all wavelengths using 180 J/cm2 were able to reduce significantly the number of P. aeruginosa, E. coli, and S. epidermidis. Here, BL420nm achieved reductions up to 99%, whereas BL455nm and BL480nm were less effective (60-83%). Biofilm-growing S. aureus was more BL sensitive than in the planktonic phase showing a reduction by 63-75%. A significant number of cell toxic events (>40%) could be found after applying doses (>30 J/cm2) of BL420nm. BL455nm showed only slight cell toxicity (180 J/cm2), whereas BL480nm was nontoxic at any dose. Conclusions: BL treatment can be effective against bacterial infections of chronic wounds. Nevertheless, using longer wavelengths >455 nm should be preferred to avoid possible toxic effects on skin and skin cells. To establish BL therapy for infected chronic wounds, further studies concerning biofilm formation and tissue compatibility are necessary.


Assuntos
Anti-Infecciosos , Infecção dos Ferimentos , Antibacterianos/farmacologia , Escherichia coli , Humanos , Staphylococcus aureus , Infecção dos Ferimentos/tratamento farmacológico
13.
Int J Antimicrob Agents ; 57(5): 106319, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33716180

RESUMO

OBJECTIVES: A major problem for wound healing is contamination with bacteria, often resulting in biofilm formation and wound infection, which, in turn, needs immediate intervention such as surgical debridement and through irrigation. A topical treatment with cold atmospheric pressure plasma (CAP) for wound disinfection may present an alternative and less painful approach. METHODS: This study investigated the antibacterial effects of a cold atmospheric pressure argon plasma jet (kINPen® MED) as a CAP source, using the three-dimensional Staphylococcus aureus immunocompetent biofilm system hpBIOM in addition to a standard planktonic test. Furthermore, skin cell compatibility was evaluated using a keratinocyte (HaCat) model. RESULTS: CAP treatment (0-240 s) followed by incubation (15, 120 min) within the CAP-treated media showed slight bactericidal efficacy under planktonic conditions but no effect on biofilms. However, indirect CAP treatment of keratinocytes performed under the same conditions resulted in a significant decrease in metabolic activity. Short CAP treatment and exposure time (30 s; 15 min) induced a slight increase in the metabolic activity; however, longer treatments and/or exposure times led to pronounced reductions up to 100%. These effects could partially be reversed by addition of catalase, indicating a dominant role of CAP-generated hydrogen peroxide. CONCLUSIONS: These results indicate that plasma treatment does not lead to the desired disinfection or significant reduction in the bacterial burden of Staphylococcus aureus in a wet milieu or in biofilms. Thus, treatment with CAP could not be recommended as a single anti-bacterial therapy for wounds but could be used to support standard treatments.


Assuntos
Antibacterianos/farmacologia , Argônio/farmacologia , Queratinócitos/efeitos dos fármacos , Gases em Plasma/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Pressão Atmosférica , Biofilmes/efeitos dos fármacos , Células HaCaT , Humanos , Viabilidade Microbiana , Pele/efeitos dos fármacos , Staphylococcus aureus/citologia , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/terapia
14.
J Photochem Photobiol B ; 209: 111952, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32659647

RESUMO

Studies have demonstrated that blue light induces biological effects, such as cell death, and inhibition of proliferation and differentiation. Since blue light at longer wavelength (>440 nm) exerts less injurious effects on cells than at shorter wavelengths, (400-440 nm), we have investigated the impact of non-toxic (LED) blue light at 453 nm wavelength on human skin fibroblasts (hsFBs). We found that besides its decreasing effects on the proliferation rate, repeated blue light irradiations (80 J/cm2) also significantly reduced TGF-ß1-induced myofibrogenesis as shown by diminished α-SMA and EDA-FN expression accompanied by reduced protein expression and phosphorylation of ERK 1/2, SMAD 2/3, and p38-key players of TGF-ß1-induced myofibrogenesis. In parallel, catalase protein expression, intracellular FAD concentrations as well as NADP+/NADPH ratio were reduced, whereas intracellular reactive oxygen species (ROS) were increased. We postulate that as a molecular mechanism downregulation of catalase and photoreduction of FAD induce intracellular oxidative stress which, in turn, affects the signaling factors of myofibrogenesis leading to a lower rate of α-SMA and EDA-FN expression and, therefore, myofibroblast formation. In conclusion, blue light even at longer wavelengths shows antifibrotic activity and may represent a suitable and safe approach in the treatment of fibrotic skin diseases including hypertrophic scarring and scleroderma.


Assuntos
Antioxidantes/metabolismo , Luz , Transdução de Sinais/efeitos da radiação , Fator de Crescimento Transformador beta1/metabolismo , Proliferação de Células/efeitos da radiação , Humanos , Miofibroblastos/citologia , Miofibroblastos/efeitos da radiação , Estresse Oxidativo
15.
J Burn Care Res ; 39(3): 413-422, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29897542

RESUMO

An enzyme mixture containing bromelain (NexoBrid®) was found to be suitable for enzymatic debridement of burn wounds, as determined by the criteria of patient comfort and pain, selectivity, and efficiency. Nevertheless, daily experience showed that pretreatment of burn wounds with several other clinical agents may inhibit debridement efficiency. Therefore, the current study was performed to identify those agents and evaluate their debridement inhibition capabilities. The impact of several common agents as well pH, on NexoBrid® debridement efficiency was evaluated in vitro. A collagen-based dermal substitute (MatriDerm®) was exposed to NexoBrid® in the presence of different agents of varying concentrations. Digestion was documented. The criteria used for judging digestion were independently classified by 3 investigators at least 3 times in succession. When a low concentration (1.0 mg/ml) of NexoBrid® was used, a ≥ 50% concentration of Prontosan® had an impact on enzymatic activity. Comparable results were obtained when even lower concentrations of Octenisept® (≥ 10%) were used. A 100-µmol/L concentration of copper inhibited the enzymatic activity of both a low (1.0 mg/ml) and high (10 mg/ml) concentration of NexoBrid®. Silver-sulfadiazine at concentrations of 10% and 90% inhibited the activity of 1 mg/ml NexoBrid®. No complete inhibition of NexoBrid® activity occurred at any concentration of iron. We recommend using polyhexanide-containing agents (Prontosan®) to rinse and presoak burn wounds. Pretreatment of burn wounds with agents containing silver and copper should be avoided. Experimentally, we found a partial inhibition of NexoBrid® activity at the distinct pH values of 3 and 11.


Assuntos
Anti-Infecciosos Locais/química , Bromelaínas/química , Queimaduras/terapia , Desbridamento/métodos , Anti-Infecciosos Locais/uso terapêutico , Betaína/análogos & derivados , Betaína/química , Betaína/uso terapêutico , Biguanidas/química , Biguanidas/uso terapêutico , Bromelaínas/uso terapêutico , Colágeno/química , Colágeno/uso terapêutico , Elastina/química , Elastina/uso terapêutico , Etanolaminas/química , Etanolaminas/uso terapêutico , Iminas , Piridinas/química , Piridinas/uso terapêutico , Pele Artificial , Ácidos Undecilênicos/química , Ácidos Undecilênicos/uso terapêutico
16.
Stem Cell Res Ther ; 9(1): 28, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402304

RESUMO

BACKGROUND: Studies in which mesenchymal stromal cells (MSC) from the placenta are compared with multiple MSC types from other sources are rare. The chorionic plate of the human placenta is mainly composed of fetal blood vessels embedded in fetal stroma tissue, lined by trophoblastic cells and organized into chorionic villi (CV) structures. METHODS: We comprehensively characterized human MSC collected from postnatal human chorionic villi of placenta (CV-MSC) by analyzing their growth and proliferation potential, differentiation, immunophenotype, extracellular matrix production, telomere length, aging phenotype, and plasticity. RESULTS: Immunophenotypic characterization of CV-MSC confirmed the typical MSC marker expression as defined by the International Society for Cellular Therapy. The surface marker profile was consistent with increased potential for proliferation, vascular localization, and early myogenic marker expression. CV-MSC retained multilineage differentiation potential and extracellular matrix remodeling properties. They have undergone reduced telomere loss and delayed onset of cellular senescence as they aged in vitro compared to three other MSC sources. We present evidence that increased human telomerase reverse transcriptase gene expression could not explain the exceptional telomere maintenance and senescence onset delay in cultured CV-MSC. Our in-vitro tumorigenesis detection assay suggests that CV-MSC are not prone to undergo malignant transformation during long-term in-vitro culture. Besides SOX2 expression, no other pluripotency features were observed in early and late passages of CV-MSC. CONCLUSIONS: Our work brings forward two remarkable characteristics of CV-MSC, the first being their extended life span as a result of delayed replicative senescence and the second being a delayed aged phenotype characterized by improved telomere length maintenance. MSC from human placenta are very attractive candidates for stem cell-based therapy applications.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Proliferação de Células , Vilosidades Coriônicas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia
17.
PLoS One ; 10(12): e0144968, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26661594

RESUMO

The proliferation of fibroblasts and myofibroblast differentiation are crucial in wound healing and wound closure. Impaired wound healing is often correlated with chronic bacterial contamination of the wound area. A new promising approach to overcome wound contamination, particularly infection with antibiotic-resistant pathogens, is the topical treatment with non-thermal "cold" atmospheric plasma (CAP). Dielectric barrier discharge (DBD) devices generate CAP containing active and reactive species, which have antibacterial effects but also may affect treated tissue/cells. Moreover, DBD treatment acidifies wound fluids and leads to an accumulation of hydrogen peroxide (H2O2) and nitric oxide products, such as nitrite and nitrate, in the wound. Thus, in this paper, we addressed the question of whether DBD-induced chemical changes may interfere with wound healing-relevant cell parameters such as viability, proliferation and myofibroblast differentiation of primary human fibroblasts. DBD treatment of 250 µl buffered saline (PBS) led to a treatment time-dependent acidification (pH 6.7; 300 s) and coincidently accumulation of nitrite (~300 µM), nitrate (~1 mM) and H2O2 (~200 µM). Fibroblast viability was reduced by single DBD treatments (60-300 s; ~77-66%) or exposure to freshly DBD-treated PBS (60-300 s; ~75-55%), accompanied by prolonged proliferation inhibition of the remaining cells. In addition, the total number of myofibroblasts was reduced, whereas in contrast, the myofibroblast frequency was significantly increased 12 days after DBD treatment or exposure to DBD-treated PBS. Control experiments mimicking DBD treatment indicate that plasma-generated H2O2 was mainly responsible for the decreased proliferation and differentiation, but not for DBD-induced toxicity. In conclusion, apart from antibacterial effects, DBD/CAP may mediate biological processes, for example, wound healing by accumulation of H2O2. Therefore, a clinical DBD treatment must be well-balanced in order to avoid possible unwanted side effects such as a delayed healing process.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Gases em Plasma/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Nitratos/metabolismo , Nitratos/toxicidade , Nitritos/metabolismo , Nitritos/toxicidade , Fator de Crescimento Transformador beta1/análise
18.
Nitric Oxide ; 44: 52-60, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25435001

RESUMO

Dielectric barrier discharge (DBD) devices generate air plasma above the skin containing active and reactive species including nitric oxide (NO). Since NO plays an essential role in skin physiology, a topical application of NO by plasma may be useful in the treatment of skin infections, impaired microcirculation and wound healing. Thus, after safety assessments of plasma treatment using human skin specimen and substitutes, NO-penetration through the epidermis, the loading of skin tissue with NO-derivates in vitro and the effects on human skin in vivo were determined. After the plasma treatment (0-60 min) of skin specimen or reconstructed epidermis no damaging effects were found (TUNEL/MTT). By Franz diffusion cell experiments plasma-induced NO penetration through epidermis and dermal enrichment with NO related species (nitrite 6-fold, nitrate 7-fold, nitrosothiols 30-fold) were observed. Furthermore, skin surface was acidified (~pH 2.7) by plasma treatment (90 s). Plasma application on the forearms of volunteers increased microcirculation fourfold in 1-2 mm and twofold in 6-8 mm depth in the treated skin areas. Regarding the NO-loading effects, skin acidification and increase in dermal microcirculation, plasma devices represent promising tools against chronic/infected wounds. However, efficacy of plasma treatment needs to be quantified in further studies and clinical trials.


Assuntos
Óxido Nítrico/farmacologia , Gases em Plasma/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Cultura em Câmaras de Difusão , Humanos , Microcirculação , Modelos Biológicos , Nitratos/metabolismo , Óxido Nítrico/farmacocinética , Nitritos/metabolismo , Gases em Plasma/efeitos adversos , Pele/irrigação sanguínea , Pele/química
19.
Redox Biol ; 2: 945-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25180171

RESUMO

Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1ß. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/biossíntese , Zinco/farmacologia , Animais , Aorta/citologia , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Ratos
20.
Exp Dermatol ; 23(4): 240-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24533842

RESUMO

Transforming growth factor-ß1 (TGF-ß1) is the major promoter of phenotypic shift between fibroblasts and myofibroblasts accompanied by the expression and incorporation of α-smooth muscle actin (α-SMA). This differentiation is crucial during normal wound healing and wound closure; however, myofibroblasts are considered as the main effecter cell type in fibrosis, for example in scleroderma and hypertrophic scarring. As blue light has exerted antiprolific and toxic effects in several cell types, we investigated whether blue light irradiations with a light-emitting diode array (420 nm) were able to affect proliferation and differentiation of human dermal fibroblasts (HDF). We found that repeated irradiation with non-toxic doses significantly inhibits TGF-ß1-induced differentiation of HDF into myofibroblasts shown by α-SMA immunocytochemistry and Western blotting. Additionally, used doses reduced proliferation and myofibroblast contractibility measured by resazurin and collagen gel contraction assays. It could be demonstrated that blue light mediates cell toxicity by oxidative stress due to the generation of singlet oxygen. We postulate that irradiations at non-toxic doses induce low-level oxidative stress and energy-consuming cellular responses, which both may effect proliferation stop and interfere with myofibroblast differentiation. Thus, targeting differentiation, proliferation and activity of myofibroblasts by blue light may represent a useful strategy to prevent or reduce pathological fibrotic conditions.


Assuntos
Diferenciação Celular/efeitos da radiação , Miofibroblastos/efeitos da radiação , Fator de Crescimento Transformador beta1/metabolismo , Actinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Luz , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Fototerapia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA