Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Cell Sci ; 137(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38482739

RESUMO

CSL proteins [named after the homologs CBF1 (RBP-Jκ in mice), Suppressor of Hairless and LAG-1] are conserved transcription factors found in animals and fungi. In the fission yeast Schizosaccharomyces pombe, they regulate various cellular processes, including cell cycle progression, lipid metabolism and cell adhesion. CSL proteins bind to DNA through their N-terminal Rel-like domain and central ß-trefoil domain. Here, we investigated the importance of DNA binding for CSL protein functions in fission yeast. We created CSL protein mutants with disrupted DNA binding and found that the vast majority of CSL protein functions depend on intact DNA binding. Specifically, DNA binding is crucial for the regulation of cell adhesion, lipid metabolism, cell cycle progression, long non-coding RNA expression and genome integrity maintenance. Interestingly, perturbed lipid metabolism leads to chromatin structure changes, potentially linking lipid metabolism to the diverse phenotypes associated with CSL protein functions. Our study highlights the critical role of DNA binding for CSL protein functions in fission yeast.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Fatores de Transcrição , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Ligação Proteica , Metabolismo dos Lipídeos/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , DNA Fúngico/metabolismo , DNA Fúngico/genética
2.
PLoS One ; 19(2): e0299200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359013

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0137820.].

3.
Elife ; 112022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36373674

RESUMO

The human SMC5/6 complex is a conserved guardian of genome stability and an emerging component of antiviral responses. These disparate functions likely require distinct mechanisms of SMC5/6 regulation. In yeast, Smc5/6 is regulated by its Nse5/6 subunits, but such regulatory subunits for human SMC5/6 are poorly defined. Here, we identify a novel SMC5/6 subunit called SIMC1 that contains SUMO interacting motifs (SIMs) and an Nse5-like domain. We isolated SIMC1 from the proteomic environment of SMC5/6 within polyomavirus large T antigen (LT)-induced subnuclear compartments. SIMC1 uses its SIMs and Nse5-like domain to localize SMC5/6 to polyomavirus replication centers (PyVRCs) at SUMO-rich PML nuclear bodies. SIMC1's Nse5-like domain binds to the putative Nse6 orthologue SLF2 to form an anti-parallel helical dimer resembling the yeast Nse5/6 structure. SIMC1-SLF2 structure-based mutagenesis defines a conserved surface region containing the N-terminus of SIMC1's helical domain that regulates SMC5/6 localization to PyVRCs. Furthermore, SLF1, which recruits SMC5/6 to DNA lesions via its BRCT and ARD motifs, binds SLF2 analogously to SIMC1 and forms a separate Nse5/6-like complex. Thus, two Nse5/6-like complexes with distinct recruitment domains control human SMC5/6 localization.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteômica , Compartimentos de Replicação Viral
4.
EMBO Rep ; 22(2): e50803, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369867

RESUMO

Mutations in the nuclear trypsin-like serine protease FAM111A cause Kenny-Caffey syndrome (KCS2) with hypoparathyroidism and skeletal dysplasia or perinatally lethal osteocraniostenosis (OCS). In addition, FAM111A was identified as a restriction factor for certain host range mutants of the SV40 polyomavirus and VACV orthopoxvirus. However, because FAM111A function is poorly characterized, its roles in restricting viral replication and the etiology of KCS2 and OCS remain undefined. We find that FAM111A KCS2 and OCS patient mutants are hyperactive and cytotoxic, inducing apoptosis-like phenotypes such as disruption of nuclear structure and pore distribution, in a protease-dependent manner. Moreover, wild-type FAM111A activity causes similar nuclear phenotypes, including the loss of nuclear barrier function, when SV40 host range mutants attempt to replicate in restrictive cells. Interestingly, pan-caspase inhibitors do not block these FAM111A-induced phenotypes, implying it acts independently or upstream of caspases. In this regard, we identify nucleoporins and the associated GANP transcription/replication factor as FAM111A interactors and candidate targets. Overall, we reveal a potentially unifying mechanism through which deregulated FAM111A activity restricts viral replication and causes KCS2 and OCS.


Assuntos
Doenças do Desenvolvimento Ósseo , Núcleo Celular/patologia , Anormalidades Craniofaciais , Hiperostose Cortical Congênita , Hipoparatireoidismo , Receptores Virais , Humanos , Vírus 40 dos Símios , Replicação Viral
5.
Curr Genet ; 65(3): 669-676, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30600397

RESUMO

Duplication of the genome poses one of the most significant threats to genetic integrity, cellular fitness, and organismal health. Therefore, numerous mechanisms have evolved that maintain replication fork stability in the face of DNA damage and allow faithful genome duplication. The fission yeast BRCT-domain-containing protein Brc1, and its budding yeast orthologue Rtt107, has emerged as a "hub" factor that integrates multiple replication fork protection mechanisms. Notably, the cofactors and pathways through which Brc1, Rtt107, and their human orthologue (PTIP) act have appeared largely distinct. This either represents true evolutionary functional divergence, or perhaps an incomplete genetic and biochemical analysis of each protein. In this regard, we recently showed that like Rtt107, Brc1 supports key functions of the Smc5-Smc6 complex, including its recruitment into DNA repair foci, chromatin association, and SUMO ligase activity. Furthermore, fission yeast cells lacking the Nse5-Nse6 genome stability factor were found to exhibit defects in Smc5-Smc6 function, similar to but more severe than those in cells lacking Brc1. Here, we place these findings in context with the known functions of Brc1, Rtt107, and Smc5-Smc6, present data suggesting a role for acetylation in Smc5-Smc6 chromatin loading, and discuss wider implications for genome stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Instabilidade Genômica , Ligases/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Dano ao DNA , Replicação do DNA , Ligases/genética , Proteína SUMO-1/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
6.
Mol Cell Biol ; 39(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348841

RESUMO

As genetic instability drives disease or loss of cell fitness, cellular safeguards have evolved to protect the genome, especially during sensitive cell cycle phases, such as DNA replication. Fission yeast Brc1 has emerged as a key factor in promoting cell survival when replication forks are stalled or collapsed. Brc1 is a multi-BRCT protein that is structurally related to the budding yeast Rtt107 and human PTIP DNA damage response factors, but functional similarities appear limited. Brc1 is a dosage suppressor of a mutation in the essential Smc5-Smc6 genome stability complex and is thought to act in a bypass pathway. In this study, we reveal an unexpectedly intimate connection between Brc1 and Smc5-Smc6 function. Brc1 is required for the accumulation of the Smc5-Smc6 genome stability complex in foci during replication stress and for activation of the intrinsic SUMO ligase activity of the complex by collapsed replication forks. Moreover, we show that the chromatin association and SUMO ligase activity of Smc5-Smc6 require the Nse5-Nse6 heterodimer, explaining how this nonessential cofactor critically supports the DNA repair roles of Smc5-Smc6. We also found that Brc1 interacts with Nse5-Nse6, as well as gamma-H2A, so it can tether Smc5-Smc6 at replicative DNA lesions to promote survival.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Dano ao DNA , Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Mutação , Recombinação Genética/genética , Proteína SUMO-1/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Sumoilação
7.
Cell Cycle ; 15(22): 3082-3093, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27687771

RESUMO

For every eukaryotic cell to grow and divide, intricately coordinated action of numerous proteins is required to ensure proper cell-cycle progression. The fission yeast Schizosaccharomyces pombe has been instrumental in elucidating the fundamental principles of cell-cycle control. Mutations in S. pombe 'cut' (cell untimely torn) genes cause failed coordination between cell and nuclear division, resulting in catastrophic mitosis. Deletion of cbf11, a fission yeast CSL transcription factor gene, triggers a 'cut' phenotype, but the precise role of Cbf11 in promoting mitotic fidelity is not known. We report that Cbf11 directly activates the transcription of the acetyl-coenzyme A carboxylase gene cut6, and the biotin uptake/biosynthesis genes vht1 and bio2, with the former 2 implicated in mitotic fidelity. Cbf11 binds to a canonical, metazoan-like CSL response element (GTGGGAA) in the cut6 promoter. Expression of Cbf11 target genes shows apparent oscillations during the cell cycle using temperature-sensitive cdc25-22 and cdc10-M17 block-release experiments, but not with other synchronization methods. The penetrance of catastrophic mitosis in cbf11 and cut6 mutants is nutrient-dependent. We also show that drastic decrease in biotin availability arrests cell proliferation but does not cause mitotic defects. Taken together, our results raise the possibility that CSL proteins play conserved roles in regulating cell-cycle progression, and they could guide experiments into mitotic CSL functions in mammals.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Mitose/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Biotina/metabolismo , DNA Fúngico/metabolismo , Epistasia Genética , Mutação/genética , Regiões Promotoras Genéticas , Ligação Proteica/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcrição Gênica
8.
PLoS One ; 10(9): e0137820, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26366556

RESUMO

BACKGROUND: Cbf11 and Cbf12, the fission yeast CSL transcription factors, have been implicated in the regulation of cell-cycle progression, but no specific roles have been described and their target genes have been only partially mapped. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of transcriptome profiling under various conditions and genome-wide analysis of CSL-DNA interactions, we identify genes regulated directly and indirectly by CSL proteins in fission yeast. We show that the expression of stress-response genes and genes that are expressed periodically during the cell cycle is deregulated upon genetic manipulation of cbf11 and/or cbf12. Accordingly, the coordination of mitosis and cytokinesis is perturbed in cells with genetically manipulated CSL protein levels, together with other specific defects in cell-cycle progression. Cbf11 activity is nutrient-dependent and Δcbf11-associated defects are mitigated by inactivation of the protein kinase A (Pka1) and stress-activated MAP kinase (Sty1p38) pathways. Furthermore, Cbf11 directly regulates a set of lipid metabolism genes and Δcbf11 cells feature a stark decrease in the number of storage lipid droplets. CONCLUSIONS/SIGNIFICANCE: Our results provide a framework for a more detailed understanding of the role of CSL proteins in the regulation of cell-cycle progression in fission yeast.


Assuntos
Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Citocinese , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética , Mitose , Proteínas de Schizosaccharomyces pombe/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética
9.
PLoS One ; 8(3): e59435, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555033

RESUMO

BACKGROUND: Transcription factors of the CSL (CBF1/RBP-Jk/Suppressor of Hairless/LAG-1) family are key regulators of metazoan development and function as the effector components of the Notch receptor signalling pathway implicated in various cell fate decisions. CSL proteins recognize specifically the GTG[G/A]AA sequence motif and several mutants compromised in their ability to bind DNA have been reported. In our previous studies we have identified a number of novel putative CSL family members in fungi, organisms lacking the Notch pathway. It is not clear whether these represent genuine CSL family members. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of in vitro and in vivo approaches we characterized the DNA binding properties of Cbf11 and Cbf12, the antagonistic CSL paralogs from the fission yeast, important for the proper coordination of cell cycle events and the regulation of cell adhesion. We have shown that a mutation of a conserved arginine residue abolishes DNA binding in both CSL paralogs, similar to the situation in mouse. We have also demonstrated the ability of Cbf11 and Cbf12 to activate gene expression in an autologous fission yeast reporter system. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the fission yeast CSL proteins are indeed genuine family members capable of functioning as transcription factors, and provide support for the ancient evolutionary origin of this important protein family.


Assuntos
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sequência de Bases , Ciclo Celular , Sequência Conservada , DNA Fúngico/metabolismo , Genes Reporter/genética , Mutação , Elementos de Resposta/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA