Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Contam Hydrol ; 241: 103797, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33813144

RESUMO

Aquifers under agricultural areas are considered to be an indirect source of nitrous oxide emission (N2O) to the atmosphere, which is the greenhouse gas (GHGs) characterized with the highest global warning potential and acts as a stratospheric ozone depletion agent. Previous investigations performed in the Cretaceous Hesbaye chalk aquifer in Eastern Belgium suggested that the dynamics of N2O in the aquifer is controlled by overlapping biochemical processes such as nitrification and denitrification. The current study aims to obtain better insight concerning the factors controlling the distribution of N2O concentration along a vertical dimension in the aquifer, and to capture and quantify the occurrence of nitrification and denitrification processes in the groundwater system. Low-flow groundwater sampling technique was undertaken at different depths in the aquifer to collect groundwater samples aiming at obtaining information about ambient aquifer hydrogeochemical conditions and their effect on the accumulation of GHGs. Afterwards, laboratory stable isotope experiments, using NO3- and NH4+ compounds labeled with heavy 15N isotope, were applied to quantify the rates of nitrification and denitrification processes. Ambient studies suggest that the occurrence of N transformation was related to denitrification while laboratory incubation experiments did not detect it. Such controversial results might be explained by the discrepancy between real aquifer conditions and lab design studies. Thus, additional in situ tracer experiments should be carried out in areas where natural groundwater fluxes do not flush the injected tracer too rapidly. In addition, it would be useful to conduct microbiological studies to obtain better insight into the nature of subsurface biofilm biotope.


Assuntos
Água Subterrânea , Óxido Nitroso , Bélgica , Carbonato de Cálcio , Desnitrificação , Laboratórios , Nitrificação , Óxido Nitroso/análise
2.
Sci Total Environ ; 659: 599-611, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096389

RESUMO

Underground pumped hydropower storage (UPHS) using abandoned mines is an alternative to store and produce electricity in flat regions. Excess of electricity is stored in form of potential energy by pumping mine water to a surface reservoir. When the demand of electricity increases, water is discharged into the mine (i.e., underground reservoir) through turbines producing electricity. During the complete operational process of UPHS plants, hydrochemical characteristics of water evolve continuously to be in equilibrium successively with the atmosphere (in the surface reservoir) and the surrounding porous medium (in the underground reservoir). It may lead to precipitation and/or dissolution of minerals and their associated consequences, such as pH variations. Induced hydrochemical changes may have an impact on the environment and/or the efficiency (e.g., corrosions and incrustations affect facilities) of UPHS plants. The nature of the hydrochemical changes is controlled by the specific chemical characteristics of the surrounding porous medium. However, the magnitude of the changes also depends on other variables, such as hydraulic parameters. The role of these parameters is established to define screening criteria and improve the selection procedure of abandoned mines for constructing UPHS plants. This work evaluates the role of the main hydrogeological factors for three different chemical composition of the porous medium. Results are obtained by means of numerical reactive transport modeling. Potential impacts on the environment (mainly on groundwater and surface water bodies) and on the efficiency of the UPHS plants vary considerably from a hydraulic parameter to another showing the need for a detailed characterization before choosing locations of future UPHS plants.

3.
Environ Pollut ; 223: 185-199, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28139324

RESUMO

Factors governing spatial and temporal patterns of pesticide compounds (pesticides and metabolites) concentrations in chalk aquifers remain unclear due to complex flow processes and multiple sources. To uncover which factors govern pesticide compound concentrations in a chalk aquifer, we develop a methodology based on time series analyses, uni- and multivariate statistics accounting for concentrations below detection limits. The methodology is applied to long records (1996-2013) of a restricted compound (bentazone), three banned compounds (atrazine, diuron and simazine) and two metabolites (deethylatrazine (DEA) and 2,6-dichlorobenzamide (BAM)) sampled in the Hesbaye chalk aquifer in Belgium. In the confined area, all compounds had non-detects fractions >80%. By contrast, maximum concentrations exceeded EU's drinking-water standard (100 ng L-1) in the unconfined area. This contrast confirms that recent recharge and polluted water did not reach the confined area, yet. Multivariate analyses based on variables representative of the hydrogeological setting revealed higher diuron and simazine concentrations in the southeast of the unconfined area, where urban activities dominate land use and where the aquifer lacks protection from a less permeable layer of hardened chalk. At individual sites, positive correlations (up to τ=0.48 for bentazone) between pesticide compound concentrations and multi-annual groundwater level fluctuations confirm occurrences of remobilization. A downward temporal trend of atrazine concentrations likely reflects decreasing use of this compound over the last 28 years. However, the lack of a break in concentrations time series and maximum concentrations of atrazine, simazine, DEA and BAM exceeding EU's standard post-ban years provide evidence of persistence. Contrasting upward trends in bentazone concentrations show that a time lag is required for restriction measures to be efficient. These results shed light on factors governing pesticide compound concentrations in chalk aquifers. The developed methodology is not restricted to chalk aquifers, it could be transposed to study other pollutants with concentrations below detection limits.


Assuntos
Água Subterrânea/química , Praguicidas/análise , Poluentes Químicos da Água/análise , Atrazina/análogos & derivados , Atrazina/análise , Bélgica , Benzamidas/análise , Carbonato de Cálcio , Diurona/análise , Monitoramento Ambiental/métodos , Praguicidas/química , Simazina/análise , Poluentes Químicos da Água/química
4.
J Environ Manage ; 128: 62-74, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23722175

RESUMO

In Europe, 30% of groundwater bodies are considered to be at risk of not achieving the Water Framework Directive (WFD) 'good status' objective by 2015, and 45% are in doubt of doing so. Diffuse agricultural pollution is one of the main pressures affecting groundwater bodies. To tackle this problem, the WFD requires Member States to design and implement cost-effective programs of measures to achieve the 'good status' objective by 2027 at the latest. Hitherto, action plans have mainly consisted of promoting the adoption of Agri-Environmental Schemes (AES). This raises a number of questions concerning the effectiveness of such schemes for improving groundwater status, and the economic implications of their implementation. We propose a hydro-economic model that combines a hydrogeological model to simulate groundwater quality evolution with agronomic and economic components to assess the expected costs, effectiveness, and benefits of AES implementation. This hydro-economic model can be used to identify cost-effective AES combinations at groundwater-body scale and to show the benefits to be expected from the resulting improvement in groundwater quality. The model is applied here to a rural area encompassing the Hesbaye aquifer, a large chalk aquifer which supplies about 230,000 inhabitants in the city of Liege (Belgium) and is severely contaminated by agricultural nitrates. We show that the time frame within which improvements in the Hesbaye groundwater quality can be expected may be much longer than that required by the WFD. Current WFD programs based on AES may be inappropriate for achieving the 'good status' objective in the most productive agricultural areas, in particular because these schemes are insufficiently attractive. Achieving 'good status' by 2027 would demand a substantial change in the design of AES, involving costs that may not be offset by benefits in the case of chalk aquifers with long renewal times.


Assuntos
Agricultura , Água Subterrânea , Modelos Econômicos , Modelos Teóricos , Poluição da Água/prevenção & controle , Bélgica , Conservação dos Recursos Naturais , Análise Custo-Benefício , Meio Ambiente , Europa (Continente) , Nitratos , Agricultura Orgânica , Poluentes Químicos da Água , Abastecimento de Água/economia
5.
J Contam Hydrol ; 118(1-2): 79-93, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20864207

RESUMO

Regional degradation of groundwater resources by nitrate has become one of the main challenges for water managers worldwide. Regulations have been defined to reverse observed nitrate trends in groundwater bodies, such as the Water Framework Directive and the Groundwater Daughter Directive in the European Union. In such a context, one of the main challenges remains to develop efficient approaches for groundwater quality assessment at regional scale, including quantitative numerical modelling, as a decision support for groundwater management. A new approach combining the use of environmental tracers and the innovative 'Hybrid Finite Element Mixing Cell' (HFEMC) modelling technique is developed to study and forecast the groundwater quality at the regional scale, with an application to a regional chalk aquifer in the Geer basin in Belgium. Tritium data and nitrate time series are used to produce a conceptual model for regional groundwater flow and contaminant transport in the combined unsaturated and saturated zones of the chalk aquifer. This shows that the spatial distribution of the contamination in the Geer basin is essentially linked to the hydrodynamic conditions prevailing in the basin, more precisely to groundwater age and mixing and not to the spatial patterns of land use or local hydrodispersive processes. A three-dimensional regional scale groundwater flow and solute transport model is developed. It is able to reproduce the spatial patterns of tritium and nitrate and the observed nitrate trends in the chalk aquifer and it is used to predict the evolution of nitrate concentrations in the basin. The modelling application shows that the global inertia of groundwater quality is strong in the basin and trend reversal is not expected to occur before the 2015 deadline fixed by the European Water Framework Directive. The expected time required for trend reversal ranges between 5 and more than 50 years, depending on the location in the basin and the expected reduction in nitrate application. To reach a good chemical status, nitrate concentrations in the infiltrating water should be reduced as soon as possible below 50mg/l; however, even in that case, more than 50 years is needed to fully reverse upward trends.


Assuntos
Carbonato de Cálcio , Modelos Teóricos , Nitratos/análise , Movimentos da Água , Abastecimento de Água/análise , Monitoramento Ambiental
6.
J Environ Monit ; 11(11): 2030-43, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19890560

RESUMO

Land use changes and the intensification of agriculture since the 1950s have resulted in a deterioration of groundwater quality in many European countries. For the protection of groundwater quality, it is necessary to (1) assess the current groundwater quality status, (2) detect changes or trends in groundwater quality, (3) assess the threat of deterioration and (4) predict future changes in groundwater quality. A variety of approaches and tools can be used to detect and extrapolate trends in groundwater quality, ranging from simple linear statistics to distributed 3D groundwater contaminant transport models. In this paper we report on a comparison of four methods for the detection and extrapolation of trends in groundwater quality: (1) statistical methods, (2) groundwater dating, (3) transfer functions, and (4) deterministic modeling. Our work shows that the selection of the method should firstly be made on the basis of the specific goals of the study (only trend detection or also extrapolation), the system under study, and the available resources. For trend detection in groundwater quality in relation to diffuse agricultural contamination, a very important aspect is whether the nature of the monitoring network and groundwater body allows the collection of samples with a distinct age or produces samples with a mixture of young and old groundwater. We conclude that there is no single optimal method to detect trends in groundwater quality across widely differing catchments.


Assuntos
Água Doce/análise , Poluentes da Água/análise , Abastecimento de Água/normas , Monitoramento Ambiental/métodos , Controle de Qualidade , Fatores de Tempo , Movimentos da Água , Abastecimento de Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA