Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dis Model Mech ; 14(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34003256

RESUMO

Understanding the mechanisms underlying tumour heterogeneity is key to the development of treatments that can target specific tumour subtypes. We have previously targeted CRE recombinase-dependent conditional deletion of the tumour suppressor genes Brca1, Brca2, p53 (also known as Trp53) and/or Pten to basal or luminal oestrogen receptor-negative (ER-) cells of the mouse mammary epithelium. We demonstrated that both the cell-of-origin and the tumour-initiating genetic lesions cooperate to influence mammary tumour phenotype. Here, we use a CRE-activated HER2 orthologue to specifically target HER2/ERBB2 oncogenic activity to basal or luminal ER- mammary epithelial cells and perform a detailed analysis of the tumours that develop. We find that, in contrast to our previous studies, basal epithelial cells are less sensitive to transformation by the activated NeuKI allele, with mammary epithelial tumour formation largely confined to luminal ER- cells. Histologically, most tumours that developed were classified as either adenocarcinomas of no special type or as metaplastic adenosquamous tumours. The former were typically characterized by amplification of the NeuNT/Erbb2 locus; in contrast, tumours displaying squamous metaplasia were enriched in animals that had been through at least one pregnancy and typically had lower levels of NeuNT/Erbb2 locus amplification but had activated canonical WNT signalling. Squamous changes in these tumours were associated with activation of the epidermal differentiation cluster. Thus, in this model of HER2 breast cancer, cell-of-origin, reproductive history, NeuNT/Erbb2 locus amplification and the activation of specific branches of the WNT signalling pathway all interact to drive inter-tumour heterogeneity.


Assuntos
Amplificação de Genes , Loci Gênicos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Receptor ErbB-2/genética , Reprodução/fisiologia , Via de Sinalização Wnt/genética , Alelos , Animais , Carcinogênese/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Modelos Animais de Doenças , Epitélio/patologia , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Integrases/metabolismo , Estimativa de Kaplan-Meier , Glândulas Mamárias Animais/patologia , Metaplasia , Camundongos Transgênicos , Fenótipo
2.
Oncotarget ; 10(27): 2586-2606, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-31080552

RESUMO

Tumours defective in the DNA homologous recombination repair pathway can be effectively treated with poly (ADP-ribose) polymerase (PARP) inhibitors; these have proven effective in clinical trials in patients with BRCA gene function-defective cancers. However, resistance observed in both pre-clinical and clinical studies is likely to impact on this treatment strategy. Over-expression of phosphoglycoprotein (P-gp) has been previously suggested as a mechanism of resistance to the PARP inhibitor olaparib in mouse models of Brca1/2-mutant breast cancer. Here, we report that in a Brca2 model treated with olaparib, P-gp upregulation is observed but is not sufficient to confer resistance. Furthermore, resistant/relapsed tumours do not show substantial changes in PK/PD of olaparib, do not downregulate PARP1 or re-establish double stranded DNA break repair by homologous recombination, all previously suggested as mechanisms of resistance. However, resistance is strongly associated with epithelial-mesenchymal transition (EMT) and treatment-naïve tumours given a single dose of olaparib upregulate EMT markers within one hour. Therefore, in this model, olaparib resistance is likely a product of an as-yet unidentified mechanism associated with rapid transition to the mesenchymal phenotype.

3.
Breast Cancer Res ; 17: 31, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25849541

RESUMO

INTRODUCTION: Triple-negative breast cancer (TNBC) is a heterogeneous group of tumours in which chemotherapy, the current mainstay of systemic treatment, is often initially beneficial but with a high risk of relapse and metastasis. There is currently no means of predicting which TNBC will relapse. We tested the hypothesis that the biological properties of normal stem cells are re-activated in tumour metastasis and that, therefore, the activation of normal mammary stem cell-associated gene sets in primary TNBC would be highly prognostic for relapse and metastasis. METHODS: Mammary basal stem and myoepithelial cells were isolated by flow cytometry and tested in low-dose transplant assays. Gene expression microarrays were used to establish expression profiles of the stem and myoepithelial populations; these were compared to each other and to our previously established mammary epithelial gene expression profiles. Stem cell genes were classified by Gene Ontology (GO) analysis and the expression of a subset analysed in the stem cell population at single cell resolution. Activation of stem cell genes was interrogated across different breast cancer cohorts and within specific subtypes and tested for clinical prognostic power. RESULTS: A set of 323 genes was identified that was expressed significantly more highly in the purified basal stem cells compared to all other cells of the mammary epithelium. A total of 109 out of 323 genes had been associated with stem cell features in at least one other study in addition to our own, providing further support for their involvement in the biology of this cell type. GO analysis demonstrated an enrichment of these genes for an association with cell migration, cytoskeletal regulation and tissue morphogenesis, consistent with a role in invasion and metastasis. Single cell resolution analysis showed that individual cells co-expressed both epithelial- and mesenchymal-associated genes/proteins. Most strikingly, we demonstrated that strong activity of this stem cell gene set in TNBCs identified those tumours most likely to rapidly progress to metastasis. CONCLUSIONS: Our findings support the hypothesis that the biological properties of normal stem cells are drivers of metastasis and that these properties can be used to stratify patients with a highly heterogeneous disease such as TNBC.


Assuntos
Glândulas Mamárias Animais/metabolismo , Células-Tronco/metabolismo , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Animais , Biomarcadores , Análise por Conglomerados , Intervalo Livre de Doença , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Metástase Neoplásica , Fenótipo , Prognóstico , Análise de Célula Única , Transcriptoma , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA