Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
MethodsX ; 12: 102592, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38445175

RESUMO

Since 1958, cell culture media supplemented with fetal bovine serum is used, despite the well-known concerns about animal welfare, reproducibility, reliability, relevance, and safety. To obliterate these concerns and increase scientific accuracy, we recently published an open access, publicly available paper on a defined medium composition to make it possible for any lab to prepare this medium. The medium supports routine culturing and cell banking as well as investigations of growth curves, dose response testing of compounds of cells in 2D and 3D, and cell migration; all important aspects for research and toxicology. Here we give a detailed description of how to mix the defined universal cell culture medium in 14 simple steps to support any entity that wishes to make it. We also list different normal and cancer cell lines that have been cultured in the defined medium.•Open source composition of animal product free universal cell culture medium•Protocols for mixing solutions of small xeno free molecules for supplementation•Protocols for mixing solutions of human proteins for supplementation.

2.
Toxicol Rep ; 10: 509-520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396848

RESUMO

Cell culturing methods are increasingly used to reduce and replace the use of live animals in biomedical research and chemical toxicity testing. Although live animals are avoided when using cell culturing methods, they often contain animal-derived components of which one of the most commonly used is foetal bovine serum (FBS). FBS is added to cell culture media among other supplements to support cell attachment/spreading and cell proliferation. The safety, batch-to-batch variation, and ethical problems with FBS are acknowledged and therefore world-wide efforts are ongoing to produce FBS free media. Here, we present the composition of a new defined medium with only human proteins either recombinant or derived from human tissues. This defined medium supports long-term culturing/routine culturing of normal cells and of cancer cells, and can be used for freezing and thawing of cells, i.e. for cell banking. Here, we show for our defined medium, growth curves and dose response curves of cells grown in two and three dimensions, and applications such as cell migration. Cell morphology was studied in real time by phase contrast and phase holographic microscopy time-lapse imaging. The cell lines used are human cancer-associated fibroblasts, keratinocytes, breast cancer JIMT-1 and MDA-MB-231 cells, colon cancer CaCo-2 cells, and pancreatic cancer MiaPaCa-2 cells as well as the mouse L929 cell line. In conclusion, we present the composition of a defined medium without animal-derived products which can be used for routine culturing and in experimental settings for normal cells and for cancer cells, i.e. our defined medium provides a leap towards a universal animal product free cell culture medium.

3.
Altern Lab Anim ; 50(5): 330-338, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35983799

RESUMO

Cell culture techniques are strongly connected with modern scientific laboratories and production facilities. Thus, choosing the most suitable medium for the cells involved is vital, not only directly to optimise cell viability but also indirectly to maximise the reliability of the experiments performed with the cells. Fetal bovine or calf serum (FBS or FCS, respectively) is the most commonly used cell culture medium supplement, providing various nutritional factors and macromolecules essential for cell growth. Yet, the use of FBS encompasses a number of disadvantages. Scientifically, one of the most severe disadvantages is the lot-to-lot variability of animal sera that hampers reproducibility. Therefore, transitioning from the use of these ill-defined, component-variable, inconsistent, xenogenic, ethically questionable and even potentially infectious media supplements, is key to achieving better data reproducibility and thus better science. To demonstrate that the transition to animal component-free cell culture is possible and achievable, we highlight three different scenarios and provide some case studies of each, namely: i) the adaptation of single cell lines to animal component-free culture conditions by the replacement of FBS and trypsin; ii) the adaptation of multicellular models to FBS-free conditions; and (iii) the replacement of FBS with human platelet lysate (hPL) for the generation of primary stem/stromal cell cultures for clinical purposes. By highlighting these examples, we aim to foster and support the global movement towards more consistent science and provide evidence that it is indeed possible to step out of the currently smouldering scientific reproducibility crisis.


Assuntos
Células-Tronco Mesenquimais , Animais , Bovinos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Reprodutibilidade dos Testes , Tripsina
4.
Biomed Res Int ; 2022: 4271358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924266

RESUMO

The present article describes a study of the effects of alpha-amylase (α-amylase) on the human neuroblastoma (NB) cell lines SH-SY5Y, IMR-32, and LA-N-1. NB is the most common malignancy diagnosed in infants younger than 12 months. Some clinical observations revealed an inverse association between the risk of NB development and breastfeeding. α-Amylase which is present in breast milk was shown to have anticancer properties already in the beginning of the 20th century. Data presented here show that pancreatic α-amylase inhibits cell proliferation and has a direct impact on glucose uptake in the human NB cell lines. Our results point out the importance of further research which could elucidate the α-amylase mode of action and justify the presence of this enzyme in breast milk as a possible inhibitor of NB development. α-Amylase can be thus recognized as a potential safe and natural mild/host anticancer agent minimizing chemotherapy-related toxicity in the treatment of NB.


Assuntos
Neuroblastoma , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glucose , Humanos , Lactente , Neuroblastoma/metabolismo , alfa-Amilases
5.
Toxicol Rep ; 9: 382-392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299871

RESUMO

Vernonia leopoldi (Sch. Bip. ex Walp.) Vatke (Asteraceae) is one of the widely used anti-cancer traditional medicinal plants in Ethiopia, despite the lack of data to support its therapeutic efficacy. Here we describe the isolation of compounds from the plant and the investigation of their cytotoxicity and other bioactivities. We identified the novel sesquiterpene lactone (SL) 11ß,13-dihydrovernodalol along with the three other SLs (vernomenin, vernolepin, and 11ß,13-dihydrovernodalin) and three flavonoids (apigenin, eriodyctiol, and luteolin) isolated from this plant for the first time. The structures of all the compounds were established based on extensive analysis of nuclear magnetic resonance spectroscopic data and confirmed by high-resolution electrospray ionization mass spectrometry. We then studied the biological activities of the SLs and found that all were cytotoxic at low µM ranges against MCF-7 and JIMT-1 breast cancer cells as well as against the normal-like MCF-10A breast epithelial cells evaluated in a spectrophotometric assay. All the SLs significantly reduced JIMT-1 cell migration after 72 h of treatment with 2 µM concentrations in a wound healing assay. Treatment with all SLs reduced the aldehyde dehydrogenase expressing cancer stem cell sub-population of the JIMT-1 cells significantly, evaluated by flow cytometry. Only 11ß,13-dihydrovernodalin resulted in a significant inhibition of tumor necrosis factor-α-induced translocation of nuclear factor κB to the cell nucleus. In addition, we show that the reporter fluorophore nitrobenzoxadiazole (NBD) can successfully be conjugated with an SL and that this SL-NBD conjugate is taken up efficiently in JIMT-1 cells. Therefore, the overall bioactivities of the SL compounds and specifically their effects against the stemness of breast cancer cells make them prime candidates for further in-depth investigation.

6.
BMC Complement Med Ther ; 21(1): 188, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215226

RESUMO

BACKGROUND: Flavonoids are compounds of interest in the search for new anti-cancer therapies. We have previously isolated the methoxyflavones 5,4'-dihydroxy-6,7,8,3'-tetramethoxyflavone (8-methoxycirsilineol), 5,4'-dihydroxy-6,7,8-trimethoxyflavone (xanthomicrol), and 5,4,'3'-trihydroxy-6,7,8-trimethoxyflavone (sideritoflavone) from Baccharis densiflora. Herein, we investigate the toxicity of these methoxyflavones in human breast-derived cell line. Our main aim was to focus on the cancer stem cell (CSC) sub-population of JIMT-1 breast cancer cells. METHODS: Initially, dose response experiments yielding inhibitory concentration 50 (IC50) values were performed using MCF-7, HCC1937, and JIMT-1 breast cancer, and the MCF-10A normal-like breast cell lines to get an understanding of toxic ranges. Due to a clear difference in the toxicity of the flavones, only sideritoflavone was selected for further studies using the JIMT-1 cell line. Effects on the CSC sub-population was investigated using flow cytometry-based methods. A wound healing assay and digital holographic microscopy were used to investigate effects on cell movement. A reporter assay was used to study effects on signal transduction pathways and Western blot for protein expression. RESULTS: The dose response data showed that 8-methoxycirsilineol was non-toxic at concentrations below 100 µM, that the IC50 of xanthomicrol was between 50 and 100 µM, while sideritoflavone was highly toxic with a single digit µM IC50 in all cell lines. Treatment of the JIMT-1 cells with 2 µM sideritoflavone did not selectively effect the CSC sub-population. Instead, sideritoflavone treatment inhibited the proliferation of both the non-CSC and the CSC sub-populations to the same extent. The inhibition of cell proliferation resulted in an accumulation of cells in the G2 phase of the cell cycle and the treated cells showed an increased level of γ-H2A histone family member X indicating DNA double strand breaks. Analysis of the effect of sideritoflavone treatment on signal transduction pathways showed activation of the Wnt, Myc/Max, and transforming growth factor-ß pathways. The level of p65/nuclear factor kappa-light-chain-enhancer of activated Β cells was increased in sideritoflavone-treated cells. Cell movement was decreased by sideritoflavone treatment. CONCLUSIONS: Altogether our data show that the methoxyflavone sideritoflavone has favourable anti-cancer effects that may be exploited for development to be used in combination with CSC specific compounds.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Baccharis , Flavonas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Neoplasias da Mama , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/genética , Via de Sinalização Wnt/genética
7.
Toxicol Rep ; 8: 627-635, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854950

RESUMO

Two-dimensional (2D) culturing of cancer cells has been indispensable for the development of anti-cancer drugs. Drug development, however, is lengthy and costly with a high attrition rate, calling to mind that 2D culturing does not mimic the three-dimensional (3D) tumour microenvironment in vivo. Thus, began the development of 3D culture models for cancer research. We have constructed a 3D 96-well plate using electrospun fibres made of biocompatible polycaprolactone (PCL). Finely-cut PCL fibre pieces in water/ethanol solution was pipetted to the wells of hydrophobic 96-well plates. A fibrous network of approximately 200 µm thickness and high porosity was formed after crosslinking and drying. Human JIMT-1 breast cancer cells or fibroblasts were seeded into the network. Confocal microscopy shows that the cells grow throughout the fibre network. The toxicity of paclitaxel and an experimental salinomycin analogue was assessed and compared in 2D and 3D cultures incubated under conditions of normoxia and hypoxia often found in tumours. The toxicity of both compounds is lower when the cells are cultured in 3D compared to 2D in either normoxia or hypoxia. We conclude that our 96-well assay is a cost-efficient tool that may be used for high-throughput pre-clinical screening of potential anti-cancer compounds.

8.
Sci Rep ; 11(1): 6655, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758206

RESUMO

The appreciation that cell interactions in tissues is dependent on their three dimensional (3D) distribution has stimulated the development of 3D cell culture models. We constructed an artificial 3D tumour by culturing human breast cancer JIMT-1 cells and human dermal fibroblasts (HDFs) in a 3D network of electrospun polycaprolactone fibres. Here, we investigate ECM components produced by the cells in the artificial 3D tumour, which is an important step in validating the model. Immunostaining and confocal fluorescence microscopy show that the ECM proteins fibronectin, collagen I, and laminin are deposited throughout the entire 3D structure. Secreted soluble factors including matrix metalloproteinases (MMPs) and interleukine-6 (IL-6) were analysed in collected medium and were found to be mainly derived from the HDFs. Treatment with transforming growth factor-ß1 (TGF-ß1), a major cytokine found in a tumour, significantly alters the MMP activity and IL-6 concentration. In addition, TGF-ß1 treatment, changes the morphology of the HDFs to become more elongated and with increased linearized actin filaments compared to non-treated HDFs. Collectively, these novel findings suggest that the artificial 3D tumour displays a clear cell distribution and ECM deposition that resembles a tumour environment in vivo, suggesting an innovative biological model to study a human tumour.


Assuntos
Derme/citologia , Derme/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Fibroblastos/metabolismo , Biomarcadores , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Matriz Extracelular , Fibronectinas/metabolismo , Imunofluorescência , Humanos , Alicerces Teciduais
9.
J Diabetes Res ; 2020: 2148740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294459

RESUMO

The current study was aimed at highlighting the role of blood pancreatic amylase in the regulation of glucose homeostasis and insulin secretion in a porcine model of streptozotocin- (STZ-) induced diabetes and in a rat pancreatic beta-cell line, BRIN-BD11. Blood glucose, plasma insulin, and glucagon levels were measured following a duodenal glucose tolerance test (IDGTT), in four pigs with STZ-induced type 2 diabetes (T2D pigs) and in four pigs with STZ-induced type 1 diabetes (T1D pigs). Four intact pigs were used as the control group. The effect of amylase supplementation on both acute and chronic insulin secretion was determined in a BRIN-BD11 cell line. The amylase infusion had no effect on the glucose utilization curve or glucagon levels in the healthy pigs. However, a significant lowering of insulin release was observed in healthy pigs treated with amylase. In the T2D pigs, the glucose utilization curve was significantly lowered in the presence of amylase, while the insulin response curve remained unchanged. Amylase also significantly increased glucagon release during the IDGTT in the T2D and T1D pigs, by between 2- and 4-fold. Amylase did not affect the glucose utilization curve in the T1D pigs. Amylase supplementation significantly decreased both acute and chronic insulin secretion in the BRIN-BD11 cells. These data confirm our previous observations and demonstrate the participation of pancreatic amylase in glucose absorption/utilization. Moreover, the present study clearly highlights the direct impact of pancreatic blood amylase on insulin secretion from pancreatic beta-cells and its interactions with insulin and glucagon secretion in a porcine model.


Assuntos
Amilases/administração & dosagem , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Glucagon/sangue , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/sangue , Animais , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 2/induzido quimicamente , Teste de Tolerância a Glucose , Infusões Intravenosas , Células Secretoras de Insulina/metabolismo , Ratos , Via Secretória , Estreptozocina , Sus scrofa , Fatores de Tempo
10.
BMC Complement Med Ther ; 20(1): 366, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33238963

RESUMO

BACKGROUND: The incidence and mortality of breast cancer in women is increasing worldwide. Breast cancer contains a subpopulation of cells known as cancer stem cells (CSCs). The CSCs are believed to be responsible for chemotherapeutic resistance and are also involved in tumor initiation, progression, evolution, and metastasis to distant sites. The present study aimed to investigate the anti-CSC potential of selected Ethiopian medicinal plants traditionally used for breast cancer treatment. METHODS: The solvent fractions of three medicinal plants (the ethyl acetate fraction of Vernonia leopoldi, the aqueous fraction of Sideroxylon oxyacanthum, and the chloroform fraction of Clematis simensis) resulting from the methanolic crude extracts were selected based on their previously demonstrated cytotoxic effects on breast cancer cell lines. The effect of these solvent fractions on the status of the cancer stem cell subpopulation of the JIMT-1 cell line was assessed by flow cytometric evaluation of the proportion of aldehyde dehydrogenase positive cells and by measuring colony forming efficiency in a serum-free soft agar assay after treatment. Effects on cell migration using a wound healing assay and on tumor necrosis factor-α-induced translocation of nuclear factor-kappa B to the cell nucleus were also investigated. RESULTS: The solvent fractions showed a dose-dependent reduction in the aldehyde dehydrogenase positive subpopulation of JIMT-1 cells. The chloroform fraction of C. simensis (80 µg/mL) completely blocked colony formation of JIMT-1 cells. The wound healing assay showed that all fractions significantly reduced cell migration. The ethyl acetate fraction of V. leopoldi (0.87 µg/mL) significantly inhibited tumor necrosis factor-α-induced nuclear factor-kappa B translocation to the nucleus. CONCLUSION: The solvent fractions of the medicinal plants showed desirable activities against breast cancer stem cells in the JIMT-1 cell line, which warrants further studies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Medicinas Tradicionais Africanas/métodos , Células-Tronco Neoplásicas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas Medicinais , Linhagem Celular Tumoral , Etiópia , Humanos , Solventes
11.
Toxicol In Vitro ; 60: 51-60, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31082491

RESUMO

Two-dimensional cell culturing has proven inadequate as a reliable preclinical tumour model due to many inherent limitations. Hence, novel three-dimensional (3D) cell culture models are needed, which in many aspects can mimic a native tumour with 3D extracellular matrix. Here, we present a 3D electrospun polycaprolactone (PCL) mesh mimicking the collagen network of tissue. The naturally hydrophobic PCL mesh was subjected to O2 plasma treatment to obtain hydrophilic fibres. Biocompatibility tests performed using L929 fibroblasts show that the 3D PCL fibre unit compartments were non-toxic. The human breast cancer cell lines MCF-7 and JIMT-1, the normal-like human breast cell line MCF-10A, and human adult fibroblast were cultured in PCL meshes and cell proliferation was monitored using the AlamarBlue® assay. Confocal microscopy and cryosectioning show that the cells penetrated deep into the fibre mesh within 1 week of cell culturing. The cancer cells form spheroids with the cells attaching mainly to each other and partly to the fibres. The human adult fibroblasts stretch out along the fibres while the MCF-10A cells stretch between fibres. Overall, we show that normal and cancer cells thrive in the 3D meshes cultured in fetal bovine free medium which eliminates the use of collagen as an extracellular matrix support.


Assuntos
Alternativas aos Testes com Animais , Técnicas de Cultura de Células , Poliésteres , Animais , Engenharia Celular , Linhagem Celular , Humanos , Camundongos , Nanofibras , Neoplasias
13.
Sci Rep ; 9(1): 2186, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778105

RESUMO

Galectin-3 is a carbohydrate binding protein which has important roles in cancer and immunity. Potent galectin-3 inhibitors have been synthesized, for experimental purposes and potential clinical use. As galectin-3 is implicated in both intra- and extracellular activities, permeability of galectin-3 inhibitors is an important parameter determining biological effects. We compared the cellular uptake of galectin-3 inhibitors and their potency in the intracellular or extracellular space. The inhibitors differed in their polar surface area (PSA), but had similar affinities for galectin-3. Using a well-established permeability assay, we confirmed that the uptake was significantly higher for the inhibitor with the lowest PSA, as expected. To analyze intracellular activity of the inhibitors, we developed a novel assay based on galectin-3 accumulation around damaged intracellular vesicles. The results show striking differences between the inhibitors intracellular potency, correlating with their PSAs. To test extracellular activity of the inhibitors, we analyzed their potency to block binding of galectin-3 to cell surfaces. All inhibitors were equally able to block galectin-3 binding to cells and this was proportional to their affinity for galectin-3. These inhibitors may serve as useful tools in exploring biological roles of galectin-3 and may further our understanding of intracellular versus extracellular roles of galectin-3.


Assuntos
Galectina 3/antagonistas & inibidores , Animais , Sítios de Ligação , Proteínas Sanguíneas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células CHO , Células CACO-2 , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Feminino , Galactosídeos/química , Galactosídeos/farmacocinética , Galactosídeos/farmacologia , Galectina 3/química , Galectina 3/genética , Galectinas , Humanos , Células MCF-7 , Estrutura Molecular , Tiogalactosídeos/química , Tiogalactosídeos/farmacocinética , Tiogalactosídeos/farmacologia
14.
Org Biomol Chem ; 16(34): 6295-6305, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30117507

RESUMO

Quinolines, indolizines, and coumarins are well known structural elements in many biologically active molecules. In this report, we have developed straightforward methods to incorporate quinoline, indolizine, and coumarin structures into galactoside derivatives under robust reaction conditions for the discovery of glycomimetic inhibitors of the galectin family of proteins that are involved in immunological and tumor-promoting biological processes. Evaluation of the quinoline, indolizine and coumarin-derivatised galactosides as inhibitors of the human galectin-1, 2, 3, 4N (N-terminal domain), 4C (C-terminal domain), 7, 8N, 8C, 9N, and 9C revealed quinoline derivatives that selectively bound galectin-8N, a galectin with key roles in lymphangiogenesis, tumor progression, and autophagy, with up to nearly 60-fold affinity improvements relative to methyl ß-d-galactopyranoside. Molecular dynamics simulations proposed an interaction mode in which Arg59 had moved 2.5 Å and in which an inhibitor carboxylate and quinoline nitrogen formed structure-stabilizing water-mediated hydrogen bonds. The compounds were demonstrated to be non-toxic in an MTT assay with several breast cancer cell lines and one normal cell line. The improved affinity, selectivity, and low cytotoxicity suggest that the quinoline-galactoside derivatives provide an attractive starting point for the development of galectin-8N inhibitors potentially interfering with pathological lymphangiogenesis, autophagy, and tumor progression.


Assuntos
Galactose/química , Galactose/metabolismo , Galectinas/química , Galectinas/metabolismo , Quinolinas/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Galactose/farmacologia , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
15.
ACS Cent Sci ; 4(6): 760-767, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29974072

RESUMO

Tumors are phenotypically heterogeneous and include subpopulations of cancer cells with stemlike properties. The natural product salinomycin, a K+-selective ionophore, was recently found to exert selectivity against such cancer stem cells. This selective effect is thought to be due to inhibition of the Wnt signaling pathway, but the mechanistic basis remains unclear. Here, we develop a functionally competent fluorescent conjugate of salinomycin to investigate the molecular mechanism of this compound. By subcellular imaging, we demonstrate a rapid cellular uptake of the conjugate and accumulation in the endoplasmic reticulum (ER). This localization is connected to induction of Ca2+ release from the ER into the cytosol. Depletion of Ca2+ from the ER induces the unfolded protein response as shown by global mRNA analysis and Western blot analysis of proteins in the pathway. In particular, salinomycin-induced ER Ca2+ depletion up-regulates C/EBP homologous protein (CHOP), which inhibits Wnt signaling by down-regulating ß-catenin. The increased cytosolic Ca2+ also activates protein kinase C, which has been shown to inhibit Wnt signaling. These results reveal that salinomycin acts in the ER membrane of breast cancer cells to cause enhanced Ca2+ release into the cytosol, presumably by mediating a counter-flux of K+ ions. The clarified mechanistic picture highlights the importance of ion fluxes in the ER as an entry to inducing phenotypic effects and should facilitate rational development of cancer treatments.

16.
Sci China Life Sci ; 61(4): 427-435, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29656338

RESUMO

Vertical nanowire arrays are increasingly investigated for their applications in steering cell behavior. The geometry of the array is an important parameter, which influences the morphology and adhesion of cells. Here, we investigate the effects of array geometry on the morphology of MCF7 cancer cells and MCF10A normal-like epithelial cells. Different gallium phosphide nanowire array-geometries were produced by varying the nanowire density and diameter. Our results show that the cell size is smaller on nanowires compared to flat gallium phosphide. The cell area decreases with increasing the nanowire density on the substrate. We observed an effect of the nanowire diameter on MCF10A cells, with a decreased cell area on 40 nm diameter nanowires, compared to 60 and 80 nm diameter nanowires in high-density arrays. The focal adhesion morphology depends on the extent to which cells are contacting the substrate. For low nanowire densities and diameters, cells are lying on the substrate and we observed large focal adhesions at the cell edges. In contrast, for high nanowire densities and diameters, cells are lying on top of the nanowires and we observed point-like focal adhesions distributed over the whole cell. Our results constitute a step towards the ability to fine-tune cell behavior on nanowire arrays.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Gálio/química , Nanofios , Fosfinas/química , Adesão Celular , Linhagem Celular , Tamanho Celular , Células Epiteliais/ultraestrutura , Humanos , Células MCF-7 , Nanofios/química , Nanofios/ultraestrutura
17.
J Mater Chem B ; 6(43): 7042-7049, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254587

RESUMO

Nanowires are presently investigated in the context of various biological and medical applications. In general, these studies are population-based, which results in sub-populations being overlooked. Here, we present a single cell analysis of cell cycle and cell movement parameters of cells seeded on nanowires using digital holographic microscopy for time-lapse imaging. MCF10A normal-like human breast epithelial cells and JIMT-1 breast cancer cells were seeded on glass, flat gallium phosphide (GaP), and on vertical GaP nanowire arrays. The cells were monitored individually using digital holographic microscopy for 48 h. The data show that cell division is affected in cells seeded on flat GaP and nanowires compared to glass, with much fewer cells dividing on the former two substrates compared to the latter. However, MCF10 cells that are dividing on glass and flat GaP substrates have similar cell cycle time, suggesting that distinct cell subpopulations are affected differently by the substrates. Altogether, the data highlight the importance of performing single cell analysis to increase our understanding of the versatility of cell behavior on different substrates, which is relevant in the design of nanowire applications.

18.
Biochem Biophys Res Commun ; 495(1): 53-59, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107689

RESUMO

Salinomycin, a polyether antibiotic, is a well-known inhibitor of human cancer stem cells. Chemical modification of the allylic C20 hydroxyl of salinomycin has enabled access to synthetic analogs that display increased cytotoxic activity compared to the native structure. The aim of this study was to investigate the activity of a cohort of C20-O-acyl analogs of salinomycin on human colorectal cancer cell lines in vitro. Two human colorectal cancer cell lines (SW480 and SW620) were exposed to three C20-O-acylated analogs and salinomycin. The impact of salinomycin and its analogs on tumor cell number, migration, cell death, and cancer stem cell specifity was analyzed. Exposure of human colorectal cancer cells to the C20-O-acylated analogs of salinomycin resulted in reduced tumor cell number and impaired tumor cell migration at lower concentrations than salinomycin. When used at higher (micromolar) concentrations, these effects were accompanied by induction of apoptotic cell death. Salinomycin analogs further expose improved activity against cancer stem cells compared to salinomycin.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Piranos/farmacologia , Acilação , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/patologia , Humanos , Células-Tronco Neoplásicas/patologia , Piranos/química
19.
RSC Adv ; 8(44): 24913-24922, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35542159

RESUMO

A series of 3-triazole-thiogalactosides and 3,3'-triazole-thiodigalactosides substituted with different five-membered heterocycles at the C-4 triazole position were found to have high selectivity for galectin-1. Initial studies on the 3-triazole-thiogalactosides indicated that five membered heterocycles in general gave increased affinity for galectin-1 and improved selectivity over galectin-3. The selectivity profile was similar for thiodigalactosides exemplified by 3,3' substituted thien-3-yltriazole and thiazol-2-yltriazole, both having single-digit nM galectin-1 affinity and almost 10-fold galectin-1 selectivity. The binding interactions of a thiodigalactoside based galectin-1 inhibitor with two thien-3-yltriazole moieties were studied with X-ray crystallography. One of the thiophene moieties was positioned deeper into the pocket than previously reported phenyltriazoles and formed close contacts with Val31, Ser29, Gly124, and Asp123. The affinity and structural analysis thus revealed that steric and electronic optimization of five-membered aromatic heterocycle binding in a narrow galectin-1 subsite confers high affinity and selectivity.

20.
Nanoscale ; 9(48): 19039-19044, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29188243

RESUMO

The search for new cancer biomarkers is essential for fundamental research, diagnostics, as well as for patient treatment and monitoring. Whereas most cancer biomarkers are biomolecules, an increasing number of studies show that mechanical cues are promising biomarker candidates. Although cell deformability has been shown to be a possible cancer biomarker, cellular forces as cancer biomarkers have been left largely unexplored. Here, we measure traction forces of cancer and normal-like cells at high spatial resolution using a robust method based on dense vertical arrays of nanowires. A force map is created using automated image analysis based on the localization of the fluorescent tips of the nanowires. We show that the force distribution and magnitude differ between MCF7 breast cancer cells and MCF10A normal-like breast epithelial cells, and that monitoring traction forces can be used to investigate the effects of anticancer drugs.


Assuntos
Biomarcadores Tumorais/análise , Adesão Celular , Nanofios , Estresse Mecânico , Movimento Celular , Células Cultivadas , Humanos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA