Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Appl Microbiol ; 132(1): 90-100, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34091986

RESUMO

AIMS: This study aimed to identify the genotypic fingerprinting of Brucella melitensis biovar 3 isolates from ruminants in Kafr El-Sheikh, Egypt, to compare with other peers globally and to highlight the epidemiology and potential causes of brucellosis control failure. METHODS AND RESULTS: A multilocus variable-number tandem-repeat analysis (MLVA 16) was carried out on 41 B. melitensis bv3 isolates, 31 from the preferential hosts (28 sheep and three goats) and 10 from atypical hosts (nine cattle and one buffalo), identified by bacteriological and molecular techniques. MLVA-16 analysis revealed 19 genotypes with nine as singletons. The most prevalent genotypes were M3_K.E (3,5,3,13,1,1,3,3,7,43,8,7,6,7,5,3), M13_K.E (3,5,3,13,1,1,3,3,7,43,8,5,8,7,7,3) and M5_K.E (3,5,3,13,1,1,3,3,7,43,8,4,8,7,11,3) circulating between different animal species. The B. melitensis isolation from aborted cows in farms that had never reared small ruminants indicates the likelihood of cow to cow B. melitensis transmission. Different genotypes of B. melitensis could be isolated from the same animal. The local geographic distribution of genotypes showed a very close genetic relatedness with genotypes reported outside the study area. Worldwide, our genotypes were mostly related to the Western Mediterranean lineage and less likely to the America's clonal lineage. CONCLUSION: There is a high genetic similarity of B. melitensis bv3 genotypes among different ruminant species, and the same animal could be infected with different genotypes. There is a high probability of spreading of B. melitensis among atypical hosts in the absence of the original hosts. The genetic relatedness of B. melitensis bv3 genotypes in the study area with other different geographic areas highlighted the national and international ruminants movement role as a potential factor for maintaining B. melitensis infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Further investigations are required to understand the impact of the presence of more than one genotype of B. melitensis in the same animal on the efficacy of brucellosis control strategies.


Assuntos
Brucella melitensis , Brucelose , Animais , Brucella melitensis/genética , Brucelose/epidemiologia , Brucelose/veterinária , Búfalos , Bovinos , Egito/epidemiologia , Genótipo , Tipagem de Sequências Multilocus , Ovinos
2.
Sci Rep ; 11(1): 3347, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558604

RESUMO

Antimicrobial resistance within pets has gained worldwide attention due to pets close contact with humans. This report examined at the molecular level, the antimicrobial resistance mechanisms associated with kennel cough and cat flu. 1378 pets in total were assessed for signs of respiratory infection, and nasal and conjunctival swabs were collected across 76 diseased animals. Phenotypically, 27% of the isolates were characterized by multidrug resistance and possessed high levels of resistance rates to ß-lactams. Phenotypic ESBLs/AmpCs production were identified within 40.5% and 24.3% of the isolates, respectively. Genotypically, ESBL- and AmpC-encoding genes were detected in 33.8% and 10.8% of the isolates, respectively, with blaSHV comprising the most identified ESBL, and blaCMY and blaACT present as the AmpC with the highest levels. qnr genes were identified in 64.9% of the isolates, with qnrS being the most prevalent (44.6%). Several antimicrobial resistance determinants were detected for the first time within pets from Africa, including blaCTX-M-37, blaCTX-M-156, blaSHV-11, blaACT-23, blaACT25/31, blaDHA-1, and blaCMY-169. Our results revealed that pets displaying symptoms of respiratory illness are potential sources for pathogenic microbes possessing unique resistance mechanisms which could be disseminated to humans, thus leading to the development of severe untreatable infections in these hosts.


Assuntos
Doenças do Gato , Doenças do Cão , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Resistência beta-Lactâmica/genética , Animais , Doenças do Gato/genética , Doenças do Gato/microbiologia , Gatos , Doenças do Cão/genética , Doenças do Cão/microbiologia , Cães , Egito , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA