Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Commun Biol ; 6(1): 1193, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001280

RESUMO

The dengue protease NS2B/NS3pro has been reported to adopt either an 'open' or a 'closed' conformation. We have developed a conformational filter that combines NMR with MD simulations to identify conformational ensembles that dominate in solution. Experimental values derived from relaxation parameters for the backbone and methyl side chains were compared with the corresponding back-calculated relaxation parameters of different conformational ensembles obtained from free MD simulations. Our results demonstrate a high prevalence for the 'closed' conformational ensemble while the 'open' conformation is absent, indicating that the latter conformation is most probably due to crystal contacts. Conversely, conformational ensembles in which the positioning of the co-factor NS2B results in a 'partially' open conformation, previously described in both MD simulations and X-ray studies, were identified by our conformational filter. Altogether, we believe that our approach allows for unambiguous identification of true conformational ensembles, an essential step for reliable drug discovery.


Assuntos
Dengue , Peptídeo Hidrolases , Humanos , Serina Endopeptidases/química , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas não Estruturais Virais/química
2.
Chem Commun (Camb) ; 59(36): 5475-5478, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37070867

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy has become a formidable tool for biochemistry and medicine. Although J-coupling carries essential structural information it may also limit the spectral resolution. Homonuclear decoupling remains a challenging problem. In this work, we introduce a new approach that uses a specific coupling value as prior knowledge, and the Hankel property of the exponential NMR signal to achieve broadband heteronuclear decoupling using the low-rank method. Our results on synthetic and realistic HMQC spectra demonstrate that the proposed method not only effectively enhances resolution by decoupling, but also maintains sensitivity and suppresses spectral artefacts. The approach can be combined with non-uniform sampling, which means that the resolution can be further improved without any extra acquisition time.

3.
IEEE Trans Neural Netw Learn Syst ; 34(9): 6214-6226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34941531

RESUMO

Exponential function is a basic form of temporal signals, and how to fast acquire this signal is one of the fundamental problems and frontiers in signal processing. To achieve this goal, partial data may be acquired but result in severe artifacts in its spectrum, which is the Fourier transform of exponentials. Thus, reliable spectrum reconstruction is highly expected in the fast data acquisition in many applications, such as chemistry, biology, and medical imaging. In this work, we propose a deep learning method whose neural network structure is designed by imitating the iterative process in the model-based state-of-the-art exponentials' reconstruction method with the low-rank Hankel matrix factorization. With the experiments on synthetic data and realistic biological magnetic resonance signals, we demonstrate that the new method yields much lower reconstruction errors and preserves the low-intensity signals much better than compared methods.

4.
IEEE Trans Neural Netw Learn Syst ; 34(10): 7578-7592, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35120010

RESUMO

The nonuniform sampling (NUS) is a powerful approach to enable fast acquisition but requires sophisticated reconstruction algorithms. Faithful reconstruction from partially sampled exponentials is highly expected in general signal processing and many applications. Deep learning (DL) has shown astonishing potential in this field, but many existing problems, such as lack of robustness and explainability, greatly limit its applications. In this work, by combining the merits of the sparse model-based optimization method and data-driven DL, we propose a DL architecture for spectra reconstruction from undersampled data, called MoDern. It follows the iterative reconstruction in solving a sparse model to build the neural network, and we elaborately design a learnable soft-thresholding to adaptively eliminate the spectrum artifacts introduced by undersampling. Extensive results on both synthetic and biological data show that MoDern enables more robust, high-fidelity, and ultrafast reconstruction than the state-of-the-art methods. Remarkably, MoDern has a small number of network parameters and is trained on solely synthetic data while generalizing well to biological data in various scenarios. Furthermore, we extend it to an open-access and easy-to-use cloud computing platform (XCloud-MoDern), contributing a promising strategy for further development of biological applications.


Assuntos
Algoritmos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Análise Espectral , Processamento de Sinais Assistido por Computador , Processamento de Imagem Assistida por Computador/métodos
5.
J Magn Reson ; 346: 107342, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459916

RESUMO

A new deep neural network based on the WaveNet architecture (WNN) is presented, which is designed to grasp specific patterns in the NMR spectra. When trained at a fixed non-uniform sampling (NUS) schedule, the WNN benefits from pattern recognition of the corresponding point spread function (PSF) pattern produced by each spectral peak resulting in the highest quality and robust reconstruction of the NUS spectra as demonstrated in simulations and exemplified in this work on 2D 1H-15N correlation spectra of three representative globular proteins with different sizes: Ubiquitin (8.6 kDa), Azurin (14 kDa), and Malt1 (44 kDa). The pattern recognition by WNN is also demonstrated for successful virtual homo-decoupling in a 2D methyl 1H-13C - HMQC spectrum of MALT1. We demonstrate using WNN that prior knowledge about the NUS schedule, which so far was not been fully exploited, can be used for designing new powerful NMR processing techniques that surpass the existing algorithmic methods.


Assuntos
Imageamento por Ressonância Magnética , Redes Neurais de Computação , Espectroscopia de Ressonância Magnética/métodos , Ubiquitina , Ressonância Magnética Nuclear Biomolecular/métodos
6.
Biomol NMR Assign ; 16(2): 363-371, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36094731

RESUMO

Mucosa-associated lymphoid tissue protein 1 (MALT1) plays a key role in adaptive immune responses by modulating specific intracellular signalling pathways that control the development and proliferation of both T and B cells. Dysfunction of these pathways is coupled to the progress of highly aggressive lymphoma as well as to potential development of an array of different immune disorders. In contrast to other signalling mediators, MALT1 is not only activated through the formation of the CBM complex together with the proteins CARMA1 and Bcl10, but also by acting as a protease that cleaves multiple substrates to promote lymphocyte proliferation and survival via the NF-κB signalling pathway. Herein, we present the partial 1H, 13C Ile/Val/Leu-Methyl resonance assignment of the monomeric apo form of the paracaspase-IgL3 domain of human MALT1. Our results provide a solid ground for future elucidation of both the three-dimensional structure and the dynamics of MALT1, key for adequate development of inhibitors, and a thorough molecular understanding of its function(s).


Assuntos
Caspases , NF-kappa B , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspases/metabolismo , Humanos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Proteínas de Neoplasias/química , Ressonância Magnética Nuclear Biomolecular
7.
Biomol NMR Assign ; 16(1): 135-145, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35149939

RESUMO

The serotype II Dengue (DENV 2) virus is the most prevalent of all four known serotypes. Herein, we present nearly complete 1H, 15N, and 13C backbone and 1H, 13C isoleucine, valine, and leucine methyl resonance assignment of the apo S135A catalytically inactive variant of the DENV 2 protease enzyme folded as a tandem formed between the serine protease domain NS3pro and the cofactor NS2B, as well as the secondary structure prediction of this complex based on the assigned chemical shifts using the TALOS-N software. Our results provide a solid ground for future elucidation of the structure and dynamic of the apo NS3pro/NS2B complex, key for adequate development of inhibitors, and a thorough molecular understanding of their function(s).


Assuntos
Vírus da Dengue , Dengue , Vírus da Dengue/química , Vírus da Dengue/metabolismo , Humanos , Proteínas Mutantes , Ressonância Magnética Nuclear Biomolecular , Proteínas não Estruturais Virais/química
8.
Angew Chem Int Ed Engl ; 60(44): 23540-23544, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34143912

RESUMO

Dysregulation of post-translational modifications (PTMs) like phosphorylation is often involved in disease. NMR may elucidate exact loci and time courses of PTMs at atomic resolution and near-physiological conditions but requires signal assignment to individual atoms. Conventional NMR methods for this base on tedious global signal assignment that may often fail, as for large intrinsically disordered proteins (IDPs). We present a sensitive, robust alternative to rapidly obtain only the local assignment near affected signals, based on FOcused SpectroscopY (FOSY) experiments using selective polarisation transfer (SPT). We prove its efficiency by identifying two phosphorylation sites of glycogen synthase kinase 3 beta (GSK3ß) in human Tau40, an IDP of 441 residues, where the extreme spectral dispersion in FOSY revealed unprimed phosphorylation also of Ser409. FOSY may broadly benefit NMR studies of PTMs and other hotspots in IDPs, including sites involved in molecular interactions.


Assuntos
Proteínas Intrinsicamente Desordenadas/análise , Ressonância Magnética Nuclear Biomolecular , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional
9.
Structure ; 29(2): 151-160.e3, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32916102

RESUMO

Phytochrome proteins guide the red/far-red photoresponse of plants, fungi, and bacteria. Crystal structures suggest that the mechanism of signal transduction from the chromophore to the output domains involves refolding of the so-called PHY tongue. It is currently not clear how the two other notable structural features of the phytochrome superfamily, the so-called helical spine and a knot in the peptide chain, are involved in photoconversion. Here, we present solution NMR data of the complete photosensory core module from Deinococcus radiodurans. Photoswitching between the resting and the active states induces changes in amide chemical shifts, residual dipolar couplings, and relaxation dynamics. All observables indicate a photoinduced structural change in the knot region and lower part of the helical spine. This implies that a conformational signal is transduced from the chromophore to the helical spine through the PAS and GAF domains. The discovered pathway underpins functional studies of plant phytochromes and may explain photosensing by phytochromes under biological conditions.


Assuntos
Proteínas de Bactérias/química , Fitocromo/química , Proteínas de Bactérias/metabolismo , Deinococcus/química , Simulação de Dinâmica Molecular , Fitocromo/metabolismo , Conformação Proteica em alfa-Hélice , Transdução de Sinais
10.
Magn Reson (Gott) ; 2(2): 843-861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37905225

RESUMO

Although the concepts of nonuniform sampling (NUS​​​​​​​) and non-Fourier spectral reconstruction in multidimensional NMR began to emerge 4 decades ago , it is only relatively recently that NUS has become more commonplace. Advantages of NUS include the ability to tailor experiments to reduce data collection time and to improve spectral quality, whether through detection of closely spaced peaks (i.e., "resolution") or peaks of weak intensity (i.e., "sensitivity"). Wider adoption of these methods is the result of improvements in computational performance, a growing abundance and flexibility of software, support from NMR spectrometer vendors, and the increased data sampling demands imposed by higher magnetic fields. However, the identification of best practices still remains a significant and unmet challenge. Unlike the discrete Fourier transform, non-Fourier methods used to reconstruct spectra from NUS data are nonlinear, depend on the complexity and nature of the signals, and lack quantitative or formal theory describing their performance. Seemingly subtle algorithmic differences may lead to significant variabilities in spectral qualities and artifacts. A community-based critical assessment of NUS challenge problems has been initiated, called the "Nonuniform Sampling Contest" (NUScon), with the objective of determining best practices for processing and analyzing NUS experiments. We address this objective by constructing challenges from NMR experiments that we inject with synthetic signals, and we process these challenges using workflows submitted by the community. In the initial rounds of NUScon our aim is to establish objective criteria for evaluating the quality of spectral reconstructions. We present here a software package for performing the quantitative analyses, and we present the results from the first two rounds of NUScon. We discuss the challenges that remain and present a roadmap for continued community-driven development with the ultimate aim of providing best practices in this rapidly evolving field. The NUScon software package and all data from evaluating the challenge problems are hosted on the NMRbox platform.

11.
Chem Commun (Camb) ; 56(93): 14585-14588, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33146166

RESUMO

NMR spectroscopy is one of the basic tools for molecular structure elucidation. Unfortunately, the resolution of the spectra is often limited by inter-nuclear couplings. The existing workarounds often alleviate the problem by trading it for another deficiency, such as spectral artefacts or difficult sample preparation and, thus, are rarely used. We suggest an approach using the coupling deconvolution in the framework of compressed sensing (CS) spectra processing that leads to a major increase in resolution, sensitivity, and overall quality of NUS reconstruction. A new mathematical description of the decoupling by deconvolution explains the effects of thermal noise and reveals a relation with the underlying assumption of the CS. The gain in resolution and sensitivity for challenging molecular systems is demonstrated for the key HNCA experiment used for protein backbone assignment applied to two large proteins: intrinsically disordered 441-residue Tau and a 509-residue globular bacteriophytochrome fragment. The approach will be valuable in a multitude of chemistry applications, where NMR experiments are compromised by the homonuclear scalar coupling.

12.
Sensors (Basel) ; 20(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961995

RESUMO

In this study we develop a variant of fluorescent sensor array technique based on addition of fluorophores to samples. A correct choice of fluorophores is critical for the successful application of the technique, which calls for the necessity of comparing different discrimination protocols. We used 36 honey samples from different sources to which various fluorophores were added (tris-(2,2'-bipyridyl) dichlororuthenium(II) (Ru(bpy)32+), zinc(II) 8-hydroxyquinoline-5-sulfonate (8-Ox-Zn), and thiazole orange in the presence of two types of deoxyribonucleic acid). The fluorescence spectra were obtained within 400-600 nm and treated by principal component analysis (PCA). No fluorophore allowed for the discrimination of all samples. To evaluate the discrimination performance of fluorophores, we introduced crossing number (CrN) calculated as the number of mutual intersections of confidence ellipses in the PCA scores plots, and relative position (RP) characterized by the pairwise mutual location of group centers and their most distant points. CrN and RP parameters correlated with each other, with total sensitivity (TS) calculated by Mahalanobis distances, and with the overall rating based on all metrics, with coefficients of correlation over 0.7. Most of the considered parameters gave the first place in the discrimination performance to Ru(bpy)32+ fluorophore.

13.
Nat Commun ; 11(1): 3014, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541820

RESUMO

Formation of amyloid-beta (Aß) oligomer pores in the membrane of neurons has been proposed to explain neurotoxicity in Alzheimer's disease (AD). Here, we present the three-dimensional structure of an Aß oligomer formed in a membrane mimicking environment, namely an Aß(1-42) tetramer, which comprises a six stranded ß-sheet core. The two faces of the ß-sheet core are hydrophobic and surrounded by the membrane-mimicking environment while the edges are hydrophilic and solvent-exposed. By increasing the concentration of Aß(1-42) in the sample, Aß(1-42) octamers are also formed, made by two Aß(1-42) tetramers facing each other forming a ß-sandwich structure. Notably, Aß(1-42) tetramers and octamers inserted into lipid bilayers as well-defined pores. To establish oligomer structure-membrane activity relationships, molecular dynamics simulations were carried out. These studies revealed a mechanism of membrane disruption in which water permeation occurred through lipid-stabilized pores mediated by the hydrophilic residues located on the core ß-sheets edges of the oligomers.


Assuntos
Peptídeos beta-Amiloides/química , Membrana Celular/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Conformação Proteica , Multimerização Proteica , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Condutividade Elétrica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Síndromes Neurotóxicas/metabolismo , Fragmentos de Peptídeos/metabolismo , Água/metabolismo
14.
Chemistry ; 26(46): 10391-10401, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32251549

RESUMO

Since the concept of deep learning (DL) was formally proposed in 2006, it has had a major impact on academic research and industry. Nowadays, DL provides an unprecedented way to analyze and process data with demonstrated great results in computer vision, medical imaging, natural language processing, and so forth. Herein, applications of DL in NMR spectroscopy are summarized, and a perspective for DL as an entirely new approach that is likely to transform NMR spectroscopy into a much more efficient and powerful technique in chemistry and life sciences is outlined.


Assuntos
Aprendizado Profundo , Espectroscopia de Ressonância Magnética
15.
Prog Nucl Magn Reson Spectrosc ; 116: 40-55, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32130958

RESUMO

NMR spectroscopy is a versatile tool for studying time-dependent processes: chemical reactions, phase transitions or macromolecular structure changes. However, time-resolved NMR is usually based on the simplest among available techniques - one-dimensional spectra serving as "snapshots" of the studied process. One of the reasons is that multidimensional experiments are very time-expensive due to costly sampling of evolution time space. In this review we summarize efforts to alleviate the problem of limited applicability of multidimensional NMR in time-resolved studies. We focus on techniques based on sparse or non-uniform sampling (NUS), which lead to experimental time reduction by omitting a significant part of the data during measurement and reconstructing it mathematically, adopting certain assumptions about the spectrum. NUS spectra are faster to acquire than conventional ones and thus better suited to the role of "snapshots", but still suffer from non-stationarity of the signal i.e. amplitude and frequency variations within a dataset. We discuss in detail how these instabilities affect the spectra, and what are the optimal ways of sampling the non-stationary FID signal. Finally, we discuss related areas of NMR where serial experiments are exploited and how they can benefit from the same NUS-based approaches.

16.
Biophys J ; 118(2): 415-421, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31839260

RESUMO

Phytochromes sense red/far-red light and control many biological processes in plants, fungi, and bacteria. Although the crystal structures of dark- and light-adapted states have been determined, the molecular mechanisms underlying photoactivation remain elusive. Here, we demonstrate that the conserved tongue region of the PHY domain of a 57-kDa photosensory module of Deinococcus radiodurans phytochrome changes from a structurally heterogeneous dark state to an ordered, light-activated state. The results were obtained in solution by utilizing a laser-triggered activation approach detected on the atomic level with high-resolution protein NMR spectroscopy. The data suggest that photosignaling of phytochromes relies on careful modulation of structural heterogeneity of the PHY tongue.


Assuntos
Luz , Fitocromo/química , Escuridão , Deinococcus , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fitocromo/metabolismo , Domínios Proteicos
17.
Angew Chem Int Ed Engl ; 59(26): 10297-10300, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-31490596

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy serves as an indispensable tool in chemistry and biology but often suffers from long experimental times. We present a proof-of-concept of the application of deep learning and neural networks for high-quality, reliable, and very fast NMR spectra reconstruction from limited experimental data. We show that the neural network training can be achieved using solely synthetic NMR signals, which lifts the prohibiting demand for a large volume of realistic training data usually required for a deep learning approach.

18.
Chembiochem ; 21(8): 1178-1187, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31705614

RESUMO

Proteins encoded by small open reading frames (sORFs) have a widespread occurrence in diverse microorganisms and can be of high functional importance. However, due to annotation biases and their technically challenging direct detection, these small proteins have been overlooked for a long time and were only recently rediscovered. The currently rapidly growing number of such proteins requires efficient methods to investigate their structure-function relationship. Herein, a method is presented for fast determination of the conformational properties of small proteins. Their small size makes them perfectly amenable for solution-state NMR spectroscopy. NMR spectroscopy can provide detailed information about their conformational states (folded, partially folded, and unstructured). In the context of the priority program on small proteins funded by the German research foundation (SPP2002), 27 small proteins from 9 different bacterial and archaeal organisms have been investigated. It is found that most of these small proteins are unstructured or partially folded. Bioinformatics tools predict that some of these unstructured proteins can potentially fold upon complex formation. A protocol for fast NMR spectroscopy structure elucidation is described for the small proteins that adopt a persistently folded structure by implementation of new NMR technologies, including automated resonance assignment and nonuniform sampling in combination with targeted acquisition.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Biologia Computacional/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Dobramento de Proteína , Fases de Leitura Aberta , Conformação Proteica
19.
Virology ; 537: 130-142, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31493651

RESUMO

Alphavirus nsP3 proteins contain long, intrinsically disordered, hypervariable domains, HVD, which serve as hubs for interaction with many cellular proteins. Here, we have deciphered the mechanism and function of HVD interaction with host factors in alphavirus replication. Using NMR spectroscopy, we show that CHIKV HVD contains two SH3 domain-binding sites. Using an innovative chemical shift perturbation signature approach, we demonstrate that CD2AP interaction with HVD is mediated by its SH3-A and SH3-C domains, and this leaves the SH3-B domain available for interaction with other cellular factor(s). This cooperative interaction with two SH3 domains increases binding affinity to CD2AP and possibly induces long-range allosteric effects in HVD. Our data demonstrate that BIN1, CD2AP and SH3KBP1 play redundant roles in initiation of CHIKV replication. Point mutations in both CHIKV HVD binding sites abolish its interaction with all three proteins, CD2AP, BIN1 and SH3KBP1. This results in strong inhibition of viral replication initiation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus Chikungunya/fisiologia , Proteínas do Citoesqueleto/metabolismo , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sítios de Ligação , Células Cultivadas , Fibroblastos/virologia , Humanos , Espectroscopia de Ressonância Magnética , Proteínas Nucleares/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Supressoras de Tumor/metabolismo
20.
Angew Chem Int Ed Engl ; 57(43): 14043-14045, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30175546

RESUMO

NMR studies of intrinsically disordered proteins and other complex biomolecular systems require spectra with the highest resolution and dimensionality. An efficient approach, extra-large NMR spectroscopy, is presented for experimental data collection, reconstruction, and handling of very large NMR spectra by a combination of the radial and non-uniform sampling, a new processing algorithm, and rigorous statistical validation. We demonstrate the first high-quality reconstruction of a full seven-dimensional HNCOCACONH and two five-dimensional HACACONH and HN(CA)CONH experiments for a representative intrinsically disordered protein α-synuclein. XLSY will significantly enhance the NMR toolbox in challenging biomolecular studies.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Algoritmos , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , alfa-Sinucleína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA