Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Microbiol Mol Biol Rev ; 87(4): e0018422, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38009915

RESUMO

SUMMARYCiliated protozoa undergo large-scale developmental rearrangement of their somatic genomes when forming a new transcriptionally active macronucleus during conjugation. This process includes the fragmentation of chromosomes derived from the germline, coupled with the efficient healing of the broken ends by de novo telomere addition. Here, we review what is known of developmental chromosome fragmentation in ciliates that have been well-studied at the molecular level (Tetrahymena, Paramecium, Euplotes, Stylonychia, and Oxytricha). These organisms differ substantially in the fidelity and precision of their fragmentation systems, as well as in the presence or absence of well-defined sequence elements that direct excision, suggesting that chromosome fragmentation systems have evolved multiple times and/or have been significantly altered during ciliate evolution. We propose a two-stage model for the evolution of the current ciliate systems, with both stages involving repetitive or transposable elements in the genome. The ancestral form of chromosome fragmentation is proposed to have been derived from the ciliate small RNA/chromatin modification process that removes transposons and other repetitive elements from the macronuclear genome during development. The evolution of this ancestral system is suggested to have potentiated its replacement in some ciliate lineages by subsequent fragmentation systems derived from mobile genetic elements.


Assuntos
Cromossomos , Elementos de DNA Transponíveis , Sequência de Bases , DNA de Protozoário/genética , Cromossomos/genética
2.
iScience ; 24(6): 102669, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34159303

RESUMO

[This corrects the article DOI: 10.1016/j.isci.2020.101950.].

3.
iScience ; 24(1): 101950, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33437937

RESUMO

The multiple mating type system of the Ciliate Tetrahymena thermophila is a self/non-self recognition system, whose specificity resides in a head-to-head, functionally distinct pair of genes, MTA and MTB. We have now sequenced and analyzed these mating type genes in nine additional Tetrahymena species. We conclude that MTA and MTB are derived from a common ancestral gene and have co-evolved for at least ∼150 Myr. We show that T. shanghaiensis, a perpetual selfer (unisexual) species, has a single mating type gene pair, whose MTA and MTB genes likely have different mating type specificity. We document the recent replacement of a complete different set of mating type specificities for another, illustrating how quickly this can happen. We discuss how varying conditions of reproductive stress could result in evolutionary co-adaptations of MTA and MTB genes and changes in mating type determination mechanisms.

4.
Curr Biol ; 30(10): R502-R510, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32428490

RESUMO

In this primer, Cheng et al. outline what we know about the nature and control of differentiation of germline versus somatic nuclei in two groups of protozoa: the Ciliates and Foraminifera. This is shown to involve a remarkable variety of developmentally programmed phenomena such as genome editing mediated epigenetically by RNA, as well differential nuclear import.


Assuntos
Evolução Biológica , Núcleo Celular/genética , Núcleo Celular/fisiologia , Eucariotos/citologia , Eucariotos/genética , DNA/genética , Regulação da Expressão Gênica , Genoma , Humanos , Mutação
5.
PLoS Genet ; 15(7): e1008099, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31339880

RESUMO

The length of cilia is controlled by a poorly understood mechanism that involves members of the conserved RCK kinase group, and among them, the LF4/MOK kinases. The multiciliated protist model, Tetrahymena, carries two types of cilia (oral and locomotory) and the length of the locomotory cilia is dependent on their position with the cell. In Tetrahymena, loss of an LF4/MOK ortholog, LF4A, lengthened the locomotory cilia, but also reduced their number. Without LF4A, cilia assembled faster and showed signs of increased intraflagellar transport (IFT). Consistently, overproduced LF4A shortened cilia and downregulated IFT. GFP-tagged LF4A, expressed in the native locus and imaged by total internal reflection microscopy, was enriched at the basal bodies and distributed along the shafts of cilia. Within cilia, most LF4A-GFP particles were immobile and a few either diffused or moved by IFT. We suggest that the distribution of LF4/MOK along the cilium delivers a uniform dose of inhibition to IFT trains that travel from the base to the tip. In a longer cilium, the IFT machinery may experience a higher cumulative dose of inhibition by LF4/MOK. Thus, LF4/MOK activity could be a readout of cilium length that helps to balance the rate of IFT-driven assembly with the rate of disassembly at steady state. We used a forward genetic screen to identify a CDK-related kinase, CDKR1, whose loss-of-function suppressed the shortening of cilia caused by overexpression of LF4A, by reducing its kinase activity. Loss of CDKR1 alone lengthened both the locomotory and oral cilia. CDKR1 resembles other known ciliary CDK-related kinases: LF2 of Chlamydomonas, mammalian CCRK and DYF-18 of C. elegans, in lacking the cyclin-binding motif and acting upstream of RCKs. The new genetic tools we developed here for Tetrahymena have potential for further dissection of the principles of cilia length regulation in multiciliated cells.


Assuntos
Cílios/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Tetrahymena/citologia , Regulação da Expressão Gênica , Locomoção , Proteínas de Protozoários/metabolismo , Tetrahymena/metabolismo , Tetrahymena/fisiologia
6.
PLoS Biol ; 17(6): e3000294, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31158217

RESUMO

A morphospecies is defined as a taxonomic species based wholly on morphology, but often morphospecies consist of clusters of cryptic species that can be identified genetically or molecularly. The nature of the evolutionary novelty that accompanies speciation in a morphospecies is an intriguing question. Morphospecies are particularly common among ciliates, a group of unicellular eukaryotes that separates 2 kinds of nuclei-the silenced germline nucleus (micronucleus [MIC]) and the actively expressed somatic nucleus (macronucleus [MAC])-within a common cytoplasm. Because of their very similar morphologies, members of the Tetrahymena genus are considered a morphospecies. We explored the hidden genomic evolution within this genus by performing a comprehensive comparative analysis of the somatic genomes of 10 species and the germline genomes of 2 species of Tetrahymena. These species show high genetic divergence; phylogenomic analysis suggests that the genus originated about 300 million years ago (Mya). Seven universal protein domains are preferentially included among the species-specific (i.e., the youngest) Tetrahymena genes. In particular, leucine-rich repeat (LRR) genes make the largest contribution to the high level of genome divergence of the 10 species. LRR genes can be sorted into 3 different age groups. Parallel evolutionary trajectories have independently occurred among LRR genes in the different Tetrahymena species. Thousands of young LRR genes contain tandem arrays of exactly 90-bp exons. The introns separating these exons show a unique, extreme phase 2 bias, suggesting a clonal origin and successive expansions of 90-bp-exon LRR genes. Identifying LRR gene age groups allowed us to document a Tetrahymena intron length cycle. The youngest 90-bp exon LRR genes in T. thermophila are concentrated in pericentromeric and subtelomeric regions of the 5 micronuclear chromosomes, suggesting that these regions act as genome innovation centers. Copies of a Tetrahymena Long interspersed element (LINE)-like retrotransposon are very frequently found physically adjacent to 90-bp exon/intron repeat units of the youngest LRR genes. We propose that Tetrahymena species have used a massive exon-shuffling mechanism, involving unequal crossing over possibly in concert with retrotransposition, to create the unique 90-bp exon array LRR genes.


Assuntos
Genômica/métodos , Especificidade da Espécie , Tetrahymena/genética , Evolução Biológica , Evolução Molecular , Éxons , Genoma de Protozoário , Íntrons , Proteínas de Repetições Ricas em Leucina , Filogenia , Proteínas/genética , Tetrahymena/metabolismo
7.
Genes (Basel) ; 9(4)2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570682

RESUMO

6-methylpurine (6mp) is a toxic analog of adenine that inhibits RNA and protein synthesis and interferes with adenine salvage mediated by adenine phosphoribosyltransferase (APRTase). Mutants of the ciliated protist Tetrahymena thermophila that are resistant to 6mp were isolated in 1974, but the mechanism of resistance has remained unknown. To investigate 6mp resistance in T. thermophila, we created 6mp-resistant strains and identified a mutation in the APRTase genomic locus (APRT1) that is responsible for 6mp resistance. While overexpression of the mutated APRT1 allele in 6mp-sensitive cells did not confer resistance to 6mp, reduced wild-type APRT1 expression resulted in a significant decrease in sensitivity to 6mp. Knocking out or reducing the expression of APRT1 by RNA interference (RNAi) did not affect robust cell growth, which indicates that adenine salvage is redundant or that de novo synthesis pathways provide sufficient adenosine monophosphate for viability. We also explored whether 6mp resistance could be used as a novel inducible selection marker by generating 6mp- and paromomycin-resistant double mutants. While 6mp- and paromomycin-resistant double mutants did express fluorescent proteins in an RNAi-based system, the system requires optimization before 6mp resistance can be used as an effective inducible selection marker.

8.
Nucleic Acids Res ; 45(16): 9481-9502, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934495

RESUMO

Developmentally programmed genome rearrangement accompanies differentiation of the silent germline micronucleus into the transcriptionally active somatic macronucleus in the ciliated protozoan Tetrahymena thermophila. Internal eliminated sequences (IES) are excised, followed by rejoining of MAC-destined sequences, while fragmentation occurs at conserved chromosome breakage sequences, generating macronuclear chromosomes. Some macronuclear chromosomes, referred to as non-maintained chromosomes (NMC), are lost soon after differentiation. Large NMC contain genes implicated in development-specific roles. One such gene encodes the domesticated piggyBac transposase TPB6, required for heterochromatin-dependent precise excision of IES residing within exons of functionally important genes. These conserved exonic IES determine alternative transcription products in the developing macronucleus; some even contain free-standing genes. Examples of precise loss of some exonic IES in the micronucleus and retention of others in the macronucleus of related species suggest an evolutionary analogy to introns. Our results reveal that germline-limited sequences can encode genes with specific expression patterns and development-related functions, which may be a recurring theme in eukaryotic organisms experiencing programmed genome rearrangement during germline to soma differentiation.


Assuntos
Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/genética , Transposases/metabolismo , Cromossomos/genética , Éxons , Rearranjo Gênico , Heterocromatina/genética , Sequências Repetidas Invertidas , Macronúcleo/genética , Micronúcleo Germinativo , Proteínas de Protozoários/genética , Interferência de RNA , Transposases/genética
9.
Annu Rev Microbiol ; 71: 133-156, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28715961

RESUMO

While sex is an ancient and highly conserved eukaryotic invention, self-incompatibility systems such as mating types or sexes appear to be derived limitations that show considerable evolutionary plasticity. Within a single class of ciliates, Paramecium and Tetrahymena species have long been known to present a wide variety of mating type numbers and modes of inheritance, but only recently have the genes involved been identified. Although similar transmembrane proteins mediate self/nonself recognition in both ciliates, the mechanisms of mating type determination differ widely, ranging from Mendelian systems to developmental nuclear differentiation, either stochastic or maternally inherited. The non-Mendelian systems rely on programmed editing of the germline genome that occurs during differentiation of the somatic nucleus, and they have co-opted different DNA recombination mechanisms-some previously unknown. Here we review the recent molecular advances and some remaining unsolved questions and discuss the possible implications of these diverse mechanisms for inbreeding/outbreeding balance regulation.


Assuntos
Epigenômica , Hereditariedade , Paramecium/crescimento & desenvolvimento , Paramecium/genética , Tetrahymena/crescimento & desenvolvimento , Tetrahymena/genética , DNA de Protozoário/genética
11.
Elife ; 52016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892853

RESUMO

The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena's germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum.


Assuntos
Rearranjo Gênico , Genoma de Protozoário , Tetrahymena thermophila/genética , Análise de Sequência de DNA
12.
Environ Sci Technol ; 50(16): 8876-85, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27398725

RESUMO

Consumer goods contain multiwall carbon nanotubes (MWCNTs) that could be released during product life cycles into the environment, where their effects are uncertain. Here, we assessed MWCNT bioaccumulation in the protozoan Tetrahymena thermophila via trophic transfer from bacterial prey (Pseudomonas aeruginosa) versus direct uptake from growth media. The experiments were conducted using (14)C-labeled MWCNT ((14)C-MWCNT) doses at or below 1 mg/L, which proved subtoxic since there were no adverse effects on the growth of the test organisms. A novel contribution of this study was the demonstration of the ability to quantify MWCNT bioaccumulation at low (sub µg/kg) concentrations accomplished by employing accelerator mass spectrometry (AMS). After the treatments with MWCNTs at nominal concentrations of 0.01 mg/L and 1 mg/L, P. aeruginosa adsorbed considerable amounts of MWCNTs: (0.18 ± 0.04) µg/mg and (21.9 ± 4.2) µg/mg bacterial dry mass, respectively. At the administered MWCNT dose of 0.3 mg/L, T. thermophila accumulated up to (0.86 ± 0.3) µg/mg and (3.4 ± 1.1) µg/mg dry mass by trophic transfer and direct uptake, respectively. Although MWCNTs did not biomagnify in the microbial food chain, MWCNTs bioaccumulated in the protozoan populations regardless of the feeding regime, which could make MWCNTs bioavailable for organisms at higher trophic levels.


Assuntos
Nanotubos de Carbono/química , Tetrahymena thermophila , Cadeia Alimentar , Pseudomonas aeruginosa
13.
Genetics ; 203(2): 649-65, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27270699

RESUMO

Tetrahymena thermophila is a ciliate model organism whose study has led to important discoveries and insights into both conserved and divergent biological processes. In this review, we describe the tools for the use of Tetrahymena as a model eukaryote, including an overview of its life cycle, orientation to its evolutionary roots, and methodological approaches to forward and reverse genetics. Recent genomic tools have expanded Tetrahymena's utility as a genetic model system. With the unique advantages that Tetrahymena provide, we argue that it will continue to be a model organism of choice.


Assuntos
Genes de Protozoários , Tetrahymena/genética , Técnicas Genéticas , Tetrahymena/crescimento & desenvolvimento , Tetrahymena/fisiologia
15.
Curr Biol ; 24(18): R831-R833, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25247352

RESUMO

Localized membrane fusion in the Tetrahymena conjugation junction generates pores that provide transient cytoplasmic continuity between the two partner cells. Without male gamete-specific fusion protein HAP2/GSC1, pores fail to form, fertilization is blocked, and pair stability is compromised.


Assuntos
Células Germinativas/fisiologia , Proteínas de Protozoários/genética , Tetrahymena thermophila/fisiologia
16.
Appl Environ Microbiol ; 79(18): 5616-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23851096

RESUMO

Nanoscale titanium dioxide (TiO2) is increasingly used in consumer goods and is entering waste streams, thereby exposing and potentially affecting environmental microbes. Protozoans could either take up TiO2 directly from water and sediments or acquire TiO2 during bactivory (ingestion of bacteria) of TiO2-encrusted bacteria. Here, the route of exposure of the ciliated protozoan Tetrahymena thermophila to TiO2 was varied and the growth of, and uptake and accumulation of TiO2 by, T. thermophila were measured. While TiO2 did not affect T. thermophila swimming or cellular morphology, direct TiO2 exposure in rich growth medium resulted in a lower population yield. When TiO2 exposure was by bactivory of Pseudomonas aeruginosa, the T. thermophila population yield and growth rate were lower than those that occurred during the bactivory of non-TiO2-encrusted bacteria. Regardless of the feeding mode, T. thermophila cells internalized TiO2 into their food vacuoles. Biomagnification of TiO2 was not observed; this was attributed to the observation that TiO2 appeared to be unable to cross the food vacuole membrane and enter the cytoplasm. Nevertheless, our findings imply that TiO2 could be transferred into higher trophic levels within food webs and that the food web could be affected by the decreased growth rate and yield of organisms near the base of the web.


Assuntos
Poluentes Ambientais/metabolismo , Pseudomonas aeruginosa/química , Tetrahymena thermophila/crescimento & desenvolvimento , Tetrahymena thermophila/metabolismo , Titânio/metabolismo , Locomoção/efeitos dos fármacos , Tetrahymena thermophila/citologia , Tetrahymena thermophila/fisiologia
17.
PLoS Biol ; 11(3): e1001518, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555191

RESUMO

The unicellular eukaryote Tetrahymena thermophila has seven mating types. Cells can mate only when they recognize cells of a different mating type as non-self. As a ciliate, Tetrahymena separates its germline and soma into two nuclei. During growth the somatic nucleus is responsible for all gene transcription while the germline nucleus remains silent. During mating, a new somatic nucleus is differentiated from a germline nucleus and mating type is decided by a stochastic process. We report here that the somatic mating type locus contains a pair of genes arranged head-to-head. Each gene encodes a mating type-specific segment and a transmembrane domain that is shared by all mating types. Somatic gene knockouts showed both genes are required for efficient non-self recognition and successful mating, as assessed by pair formation and progeny production. The germline mating type locus consists of a tandem array of incomplete gene pairs representing each potential mating type. During mating, a complete new gene pair is assembled at the somatic mating type locus; the incomplete genes of one gene pair are completed by joining to gene segments at each end of germline array. All other germline gene pairs are deleted in the process. These programmed DNA rearrangements make this a fascinating system of mating type determination.


Assuntos
Reprodução/fisiologia , Tetrahymena thermophila/fisiologia , Reprodução/genética , Tetrahymena thermophila/genética
18.
Methods Cell Biol ; 109: 301-25, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22444149

RESUMO

The differentiation of germline and somatic genomes in Tetrahymena thermophila results in two independent systems of genetic transmission. One is the conserved, sexual Mendelian genetics system of the germline genome. The other is a random genetic assortment mechanism, which operates in the somatic genome during asexual propagation. This chapter describes both systems, their interplay, and how they are exploited to construct useful biological reagents and powerful tools, which can be used to answer a variety of experimental questions.


Assuntos
Cruzamentos Genéticos , DNA de Protozoário/genética , Genoma de Protozoário , Tetrahymena thermophila/genética , Técnicas de Cultura de Células , Divisão do Núcleo Celular , Mapeamento Cromossômico/métodos , Cromossomos/química , Cromossomos/genética , Conjugação Genética , Meios de Cultura/química , DNA de Protozoário/química , Heterozigoto , Homozigoto , Macronúcleo/química , Macronúcleo/genética , Micronúcleo Germinativo/química , Micronúcleo Germinativo/genética , Mutação , Fenótipo , Reprodução Assexuada , Tetrahymena thermophila/química
19.
PLoS One ; 7(2): e30630, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22347391

RESUMO

BACKGROUND: The ciliated protozoan Tetrahymena thermophila is a well-studied single-celled eukaryote model organism for cellular and molecular biology. However, the lack of extensive T. thermophila cDNA libraries or a large expressed sequence tag (EST) database limited the quality of the original genome annotation. METHODOLOGY/PRINCIPAL FINDINGS: This RNA-seq study describes the first deep sequencing analysis of the T. thermophila transcriptome during the three major stages of the life cycle: growth, starvation and conjugation. Uniquely mapped reads covered more than 96% of the 24,725 predicted gene models in the somatic genome. More than 1,000 new transcribed regions were identified. The great dynamic range of RNA-seq allowed detection of a nearly six order-of-magnitude range of measurable gene expression orchestrated by this cell. RNA-seq also allowed the first prediction of transcript untranslated regions (UTRs) and an updated (larger) size estimate of the T. thermophila transcriptome: 57 Mb, or about 55% of the somatic genome. Our study identified nearly 1,500 alternative splicing (AS) events distributed over 5.2% of T. thermophila genes. This percentage represents a two order-of-magnitude increase over previous EST-based estimates in Tetrahymena. Evidence of stage-specific regulation of alternative splicing was also obtained. Finally, our study allowed us to completely confirm about 26.8% of the genes originally predicted by the gene finder, to correct coding sequence boundaries and intron-exon junctions for about a third, and to reassign microarray probes and correct earlier microarray data. CONCLUSIONS/SIGNIFICANCE: RNA-seq data significantly improve the genome annotation and provide a fully comprehensive view of the global transcriptome of T. thermophila. To our knowledge, 5.2% of T. thermophila genes with AS is the highest percentage of genes showing AS reported in a unicellular eukaryote. Tetrahymena thus becomes an excellent unicellular model eukaryote in which to investigate mechanisms of alternative splicing.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA de Protozoário/genética , Análise de Sequência de RNA/métodos , Tetrahymena thermophila/genética , Genes de Protozoários , Anotação de Sequência Molecular , Transcriptoma
20.
Res Microbiol ; 162(6): 578-86, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21624459

RESUMO

Tetrahymena thermophila is a ciliate--a unicellular eukaryote. Remarkably, every cell maintains differentiated germline and somatic genomes: one silent, the other expressed. Moreover, the two genomes undergo diverse processes, some as extreme as life and death, simultaneously in the same cytoplasm. Conserved eukaryotic mechanisms have been modified in ciliates to selectively deal with the two genomes. We describe research in several areas of Tetrahymena biology, including meiosis, amitosis, genetic assortment, selective nuclear pore transport, somatic RNAi-guided heterochromatin formation, DNA excision and programmed nuclear death by autophagy, which has enriched and broadened knowledge of those mechanisms.


Assuntos
Núcleo Celular/genética , Genoma de Protozoário , Tetrahymena thermophila/genética , Divisão do Núcleo Celular , Interferência de RNA , Tetrahymena thermophila/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA