Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337375

RESUMO

The rise of agro-industrial activities over recent decades has exponentially increased lignocellulose biomasses (LCB) production. LCB serves as a cost-effective source for fermentable sugars and other renewable chemicals. This study explores the use of microbial consortia, particularly thermophilic consortia, for LCB deconstruction. Thermophiles produce stable enzymes that retain activity under industrial conditions, presenting a promising approach for LCB conversion. This research focused on two microbial consortia (i.e., microbiomes) that were analyzed for enzyme production using a cheap medium, i.e., a mixture of spent mushroom substrate (SMS) and digestate. The secreted xylanolytic enzymes were characterized in terms of temperature and pH optima, thermal stability, and hydrolysis products from LCB-derived polysaccharides. These enzymes showed optimal activity aligning with common biorefinery conditions and outperformed a formulated enzyme mixture in thermostability tests in the digestate. Phylogenetic and genomic analyses highlighted the genetic diversity and metabolic potential of these microbiomes. Bacillus licheniformis was identified as a key species, with two distinct strains contributing to enzyme production. The presence of specific glycoside hydrolases involved in the cellulose and hemicellulose degradation underscores these consortia's capacity for efficient LCB conversion. These findings highlight the potential of thermophilic microbiomes, isolated from an industrial environment, as a robust source of robust enzymes, paving the way for more sustainable and cost-effective bioconversion processes in biofuel and biochemical production and other biotechnological applications.


Assuntos
Glicosídeo Hidrolases , Lignina , Consórcios Microbianos , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Lignina/metabolismo , Anaerobiose , Filogenia , Hidrólise , Biomassa , Polissacarídeos/metabolismo , Concentração de Íons de Hidrogênio , Bacillus licheniformis/enzimologia , Bacillus licheniformis/metabolismo , Bacillus licheniformis/genética , Temperatura , Estabilidade Enzimática
2.
Protein Sci ; 33(8): e5089, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39012001

RESUMO

D-3-phosphoglycerate dehydrogenase (PHGDH) catalyzes the NAD+-dependent conversion of D-3-phospho-glycerate to 3-phosphohydroxypyruvate, the first step in the phosphorylated pathway for L-serine (L-Ser) biosynthesis. L-Ser plays different relevant metabolic roles in eukaryotic cells: alterations in L-Ser metabolism have been linked to serious neurological disorders. The human PHGDH (hPHGDH), showing a homotetrameric state in solution, is made of four domains, among which there are two regulatory domains at the C-terminus: the aspartate kinase-chorismate mutase-tyrA prephenate dehydrogenase (ACT) and allosteric substrate-binding (ASB) domains. The structure of hPHGDH was solved only for a truncated, dimeric form harboring the N-terminal end containing the substrate and the cofactor binding domains. A model ensemble of the tetrameric hPHGDH was generated using AlphaFold coupled with molecular dynamics refinement. By analyzing the inter-subunit interactions at the tetrameric interface, the residues F418, L478, P479, R454, and Y495 were selected and their role was studied by the alanine-scanning mutagenesis approach. The F418A variant modifies the putative ASB, slightly alters the activity, the fraction of protein in the tetrameric state, and the protein stability; it seems relevant in dimers' recognition to yield the tetrameric oligomer. On the contrary, the R454A, L478A, P479A, and Y495A variants (ACT domain) determine a loss of the tetrameric assembly, resulting in low stability and misfolding, triggering the aggregation and hampering the activity. The predicted tetrameric interface seems mediated by residues at the ACT domain, and the tetramer formation seems crucial for proper folding of hPHGDH, which, in turn, is essential for both stability and functionality.


Assuntos
Fosfoglicerato Desidrogenase , Fosfoglicerato Desidrogenase/química , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Humanos , Estrutura Quaternária de Proteína , Modelos Moleculares , Multimerização Proteica , Simulação de Dinâmica Molecular , Domínios Proteicos , Cristalografia por Raios X
3.
Int J Biol Macromol ; 275(Pt 1): 133449, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944065

RESUMO

Glycoside hydrolases (GHs) are pivotal in the hydrolysis of the glycosidic bonds of sugars, which are the main carbon and energy sources. The genome of Marinomonas sp. ef1, an Antarctic bacterium, contains three GHs belonging to family 3. These enzymes have distinct architectures and low sequence identity, suggesting that they originated from separate horizontal gene transfer events. M-GH3_A and M-GH3_B, were found to differ in cold adaptation and substrate specificity. M-GH3_A is a bona fide cold-active enzyme since it retains 20 % activity at 10 °C and exhibits poor long-term thermal stability. On the other hand, M-GH3_B shows mesophilic traits with very low activity at 10 °C (< 5 %) and higher long-term thermal stability. Substrate specificity assays highlight that M-GH3_A is a promiscuous ß-glucosidase mainly active on cellobiose and cellotetraose, whereas M-GH3_B is a ß-xylosidase active on xylan and arabinoxylan. Structural analysis suggests that such functional differences are due to their differently shaped active sites. The active site of M-GH3_A is wider but has a narrower entrance compared to that of M-GH3_B. Genome-based prediction of metabolic pathways suggests that Marinomonas sp. ef1 can use monosaccharides derived from the GH3-catalyzed hydrolysis of oligosaccharides either as a carbon source or for producing osmolytes.


Assuntos
Evolução Molecular , Glicosídeo Hidrolases , Oligossacarídeos , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Especificidade por Substrato , Oligossacarídeos/metabolismo , Regiões Antárticas , Polissacarídeos/metabolismo , Polissacarídeos/química , Filogenia , Marinomonas/enzimologia , Marinomonas/genética , Organismos Aquáticos/enzimologia , Estabilidade Enzimática , Domínio Catalítico , Hidrólise
4.
Biofactors ; 50(1): 181-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37650587

RESUMO

In the brain, the non-essential amino acid L-serine is produced through the phosphorylated pathway (PP) starting from the glycolytic intermediate 3-phosphoglycerate: among the different roles played by this amino acid, it can be converted into D-serine and glycine, the two main co-agonists of NMDA receptors. In humans, the enzymes of the PP, namely phosphoglycerate dehydrogenase (hPHGDH, which catalyzes the first and rate-limiting step of this pathway), 3-phosphoserine aminotransferase, and 3-phosphoserine phosphatase are likely organized in the cytosol as a metabolic assembly (a "serinosome"). The hPHGDH deficiency is a pathological condition biochemically characterized by reduced levels of L-serine in plasma and cerebrospinal fluid and clinically identified by severe neurological impairment. Here, three single-point variants responsible for hPHGDH deficiency and Neu-Laxova syndrome have been studied. Their biochemical characterization shows that V261M, V425M, and V490M substitutions alter either the kinetic (both maximal activity and Km for 3-phosphoglycerate in the physiological direction) and the structural properties (secondary, tertiary, and quaternary structure, favoring aggregation) of hPHGDH. All the three variants have been successfully ectopically expressed in U251 cells, thus the pathological effect is not due to hindered expression level. At the cellular level, mistargeting and aggregation phenomena have been observed in cells transiently expressing the pathological protein variants, as well as a reduced L-serine cellular level. Previous studies demonstrated that the pharmacological supplementation of L-serine in hPHGDH deficiencies could ameliorate some of the related symptoms: our results now suggest the use of additional and alternative therapeutic approaches.


Assuntos
Encefalopatias , Ácidos Glicéricos , Serina , Humanos , Serina/genética , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/química , Encefalopatias/metabolismo , Aminoácidos
5.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835289

RESUMO

The accumulation of synthetic plastic waste in the environment has become a global concern. Microbial enzymes (purified or as whole-cell biocatalysts) represent emerging biotechnological tools for waste circularity; they can depolymerize materials into reusable building blocks, but their contribution must be considered within the context of present waste management practices. This review reports on the prospective of biotechnological tools for plastic bio-recycling within the framework of plastic waste management in Europe. Available biotechnology tools can support polyethylene terephthalate (PET) recycling. However, PET represents only ≈7% of unrecycled plastic waste. Polyurethanes, the principal unrecycled waste fraction, together with other thermosets and more recalcitrant thermoplastics (e.g., polyolefins) are the next plausible target for enzyme-based depolymerization, even if this process is currently effective only on ideal polyester-based polymers. To extend the contribution of biotechnology to plastic circularity, optimization of collection and sorting systems should be considered to feed chemoenzymatic technologies for the treatment of more recalcitrant and mixed polymers. In addition, new bio-based technologies with a lower environmental impact in comparison with the present approaches should be developed to depolymerize (available or new) plastic materials, that should be designed for the required durability and for being susceptible to the action of enzymes.


Assuntos
Plásticos , Gerenciamento de Resíduos , Polímeros , Poliuretanos , Polietilenotereftalatos , Biotecnologia , Reciclagem
6.
FEBS J ; 290(12): 3185-3202, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36695006

RESUMO

Enzymatic degradation of poly(ethylene terephthalate) (PET) is becoming a reality because of the identification of novel PET-hydrolysing enzymes (PHEs) and the engineering of evolved enzyme variants. Here, improved variants of leaf-branch compost cutinase (LCC), a thermostable enzyme isolated by a metagenomic approach, were generated by a semi-rational protein engineering approach. Starting from a deleted LCC form lacking the secretion signal (ΔLCC), single and double variants possessing a higher activity on PET were isolated. The single-point F243T ΔLCC variant partially (~ 67%) depolymerized amorphous PET film producing ~ 21.9 mm of products after 27 h of reaction at 72 °C. The S101N/F243T ΔLCC double variant reached a further increase in activity on PET. Notably, for both single and double variants the highest conversion yield was obtained at 55 °C. Kinetics studies and molecular dynamics simulations support that a slight decreased affinity for PET is responsible for the superior degradation performance of the S101N/F243T variant and that this stems from a slightly higher flexibility of the active site region close to position 243. Furthermore, our findings question the need for a high reaction temperature for PET degradation, at least for LCC: at ≥ 70 °C, the conversion of amorphous PET into a more crystalline polymer, resistant to enzymatic hydrolysis, is favoured. The evolved S101N/F243T ΔLCC variant is able to depolymerize fully 1.3 g of untreated postconsumer PET waste in ≤ 3 days at 55 °C (using 1.25 mg of enzyme only), this making PET enzymatic degradation by engineering LCC a more ecofriendly and sustainable process.


Assuntos
Hidrolases de Éster Carboxílico , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Temperatura , Hidrolases de Éster Carboxílico/metabolismo , Engenharia de Proteínas , Hidrolases/química
7.
FEBS J ; 290(9): 2394-2411, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36266734

RESUMO

A key aspect of adaptation to cold environments is the production of cold-active enzymes by psychrophilic organisms. These enzymes not only have high activity at low temperatures, but also exhibit remarkable structural flexibility and thermolability. In this context, the role of metal ions has been little explored, and the few available studies seem to suggest that metal binding counteracts structural flexibility. This article reports an investigation into the role of the binding of manganese ion (Mn2+ ) in the thermal adaptation of an esterase (M-Est) of the GDSx family, identified in the genome of the Antarctic bacterium Marinomonas sp. ef1. M-Est is specific for esters containing acetate groups and turned out to be a highly thermolabile cold-active enzyme, with a catalysis optimum temperature of 5 °C and a melting temperature of 31.7 °C. A combination of biochemical and computational analyses, including molecular dynamics simulations, revealed that M-Est binds Mn2+ ions via a single binding site located on the surface of the enzyme, close to the active site. Although the interaction between M-Est and Mn2+ induces only local conformational changes involving the active site, quite surprisingly they trigger an improvement in both thermal stability and catalytic efficiency under mild temperature conditions. These results, together with the conservation of the Mn2+ binding site among psychrophilic and psychrotolerant homologues, suggest that Mn2+ binding may be a useful, albeit atypical, strategy to mitigate the detrimental effects of temperature on true cold-active enzymes.


Assuntos
Temperatura Baixa , Esterases , Esterases/genética , Temperatura , Sítios de Ligação , Bactérias , Íons , Estabilidade Enzimática
8.
Cancers (Basel) ; 13(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34638460

RESUMO

Despite advances in tumor treatment, the inconsistent response is a major challenge among glioblastoma multiform (GBM) that lead to different survival time. Our aim was to integrate multimodal MRI with non-supervised and supervised machine learning methods to predict GBM patients' survival time. To this end, we identified different compartments of the tumor and extracted their features. Next, we applied Random Forest-Recursive Feature Elimination (RF-RFE) to identify the most relevant features to feed into a GBoost machine. This study included 29 GBM patients with known survival time. RF-RFE GBoost model was evaluated to assess the survival prediction performance using optimal features. Furthermore, overall survival (OS) was analyzed using univariate and multivariate Cox regression analyses, to evaluate the effect of ROIs and their features on survival. The results showed that a RF-RFE Gboost machine was able to predict survival time with 75% accuracy. The results also revealed that the rCBV in the low perfusion area was significantly different between groups and had the greatest effect size in terms of the rate of change of the response variable (survival time). In conclusion, not only integration of multi-modality MRI but also feature selection method can enhance the classifier performance.

9.
PLoS One ; 16(10): e0256817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34699529

RESUMO

The glycoside hydrolase 19 (GH19) is a bifunctional family of chitinases and endolysins, which have been studied for the control of plant fungal pests, the recycle of chitin biomass, and the treatment of multi-drug resistant bacteria. The GH19 domain-containing sequences (22,461) were divided into a chitinase and an endolysin subfamily by analyzing sequence networks, guided by taxonomy and the substrate specificity of characterized enzymes. The chitinase subfamily was split into seventeen groups, thus extending the previous classification. The endolysin subfamily is more diverse and consists of thirty-four groups. Despite their sequence diversity, twenty-six residues are conserved in chitinases and endolysins, which can be distinguished by two specific sequence patterns at six and four positions, respectively. Their location outside the catalytic cleft suggests a possible mechanism for substrate specificity that goes beyond the direct interaction with the substrate. The evolution of the GH19 catalytic domain was investigated by large-scale phylogeny. The inferred evolutionary history and putative horizontal gene transfer events differ from previous works. While no clear patterns were detected in endolysins, chitinases varied in sequence length by up to four loop insertions, causing at least eight distinct presence/absence loop combinations. The annotated GH19 sequences and structures are accessible via the GH19 Engineering Database (GH19ED, https://gh19ed.biocatnet.de). The GH19ED has been developed to support the prediction of substrate specificity and the search for novel GH19 enzymes from neglected taxonomic groups or in regions of the sequence space where few sequences have been described yet.


Assuntos
Quitinases/genética , Endopeptidases/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Quitinases/química , Quitinases/metabolismo , Bases de Dados de Proteínas , Endopeptidases/química , Endopeptidases/metabolismo , Evolução Molecular , Fungos/química , Fungos/genética , Fungos/metabolismo , Humanos , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Especificidade por Substrato
10.
Biomolecules ; 11(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572576

RESUMO

The isolation of nanobodies from pre-immune libraries by means of biopanning is a straightforward process. Nevertheless, the recovered candidates often require optimization to improve some of their biophysical characteristics. In principle, CDRs are not mutated because they are likely to be part of the antibody paratope, but in this work, we describe a mutagenesis strategy that specifically addresses CDR1. Its sequence was identified as an instability hot spot by the PROSS program, and the available structural information indicated that four CDR1 residues bound directly to the antigen. We therefore modified the loop flexibility with the addition of an extra glycine rather than by mutating single amino acids. This approach significantly increased the nanobody yields but traded-off with moderate affinity loss. Accurate modeling coupled with atomistic molecular dynamics simulations enabled the modifications induced by the glycine insertion and the rationale behind the engineering design to be described in detail.


Assuntos
Regiões Determinantes de Complementaridade/imunologia , Proteínas Recombinantes/biossíntese , Anticorpos de Domínio Único/imunologia , Sequência de Aminoácidos , Regiões Determinantes de Complementaridade/química , Simulação de Dinâmica Molecular , Anticorpos de Domínio Único/química
11.
Int J Biol Macromol ; 182: 502-511, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848543

RESUMO

High-resolution structural data of complexes between antibodies and membrane receptors still represent a demanding task. In this study, we used complementary sets of experimental data to obtain a structural model of the complex formed by the human epidermal growth factor receptor 2 (HER2) and its specific nanobody A10. First we identified by NMR the residues that bind or rearrange as a consequence of the complex formation. In parallel, the complex was cross-linked, digested and the resulting peptides were characterized by mass-spectrometry to define maximal distance restraints between HER2 and A10 amino acids in their complex. These independent datasets guided a docking process, refined by molecular dynamics simulations, to develop a model of the complex and estimate per-residue free-energy contributions. Such a model explains the experimental data and identifies a second, non-canonical paratope, located in the region opposite to the conventional nanobody paratope, formed by the hypervariable loop regions LH1 and LH3. Both paratopes contributed substantially to the overall affinity by binding to independent HER2 epitopes. Nanobody mutants with substitution of key interaction residues, as indicated by the model, possess significantly lower affinity for HER2. This is the first described case of a "natural" biparatopic nanobody, directly selected by in-vitro panning.


Assuntos
Sítios de Ligação de Anticorpos , Receptor ErbB-2/química , Anticorpos de Cadeia Única/química , Humanos , Simulação de Acoplamento Molecular , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Ligação Proteica , Receptor ErbB-2/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
12.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008691

RESUMO

Enzymatic degradation is a promising green approach to bioremediation and recycling of the polymer poly(ethylene terephthalate) (PET). In the past few years, several PET-hydrolysing enzymes (PHEs) have been discovered, and new variants have been evolved by protein engineering. Here, we report on a straightforward workflow employing semi-rational protein engineering combined to a high-throughput screening of variant libraries for their activity on PET nanoparticles. Using this approach, starting from the double variant W159H/S238F of Ideonella sakaiensis 201-F6 PETase, the W159H/F238A-ΔIsPET variant, possessing a higher hydrolytic activity on PET, was identified. This variant was stabilized by introducing two additional known substitutions (S121E and D186H) generating the TS-ΔIsPET variant. By using 0.1 mg mL-1 of TS-ΔIsPET, ~10.6 mM of degradation products were produced in 2 days from 9 mg mL-1 PET microparticles (~26% depolymerization yield). Indeed, TS-ΔIsPET allowed a massive degradation of PET nanoparticles (>80% depolymerization yield) in 1.5 h using only 20 µg of enzyme mL-1. The rationale underlying the effect on the catalytic parameters due to the F238A substitution was studied by enzymatic investigation and molecular dynamics/docking analysis. The present workflow is a well-suited protocol for the evolution of PHEs to help generate an efficient enzymatic toolbox for polyester degradation.


Assuntos
Bactérias/enzimologia , Enzimas/metabolismo , Polietilenotereftalatos/química , Engenharia de Proteínas , Biodegradação Ambiental , Simulação por Computador , Estabilidade Enzimática , Hidrólise , Cinética , Microplásticos , Simulação de Dinâmica Molecular , Nanopartículas/química , Temperatura
13.
FEBS J ; 288(2): 546-565, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32363751

RESUMO

To survive in cold environments, psychrophilic organisms produce enzymes endowed with high specific activity at low temperature. The structure of these enzymes is usually flexible and mostly thermolabile. In this work, we investigate the structural basis of cold adaptation of a GH42 ß-galactosidase from the psychrophilic Marinomonas ef1. This enzyme couples cold activity with astonishing robustness for a psychrophilic protein, for it retains 23% of its highest activity at 5 °C and it is stable for several days at 37 °C and even 50 °C. Phylogenetic analyses indicate a close relationship with thermophilic ß-galactosidases, suggesting that the present-day enzyme evolved from a thermostable scaffold modeled by environmental selective pressure. The crystallographic structure reveals the overall similarity with GH42 enzymes, along with a hexameric arrangement (dimer of trimers) not found in psychrophilic, mesophilic, and thermophilic homologues. In the quaternary structure, protomers form a large central cavity, whose accessibility to the substrate is promoted by the dynamic behavior of surface loops, even at low temperature. A peculiar cooperative behavior of the enzyme is likely related to the increase of the internal cavity permeability triggered by heating. Overall, our results highlight a novel strategy of enzyme cold adaptation, based on the oligomerization state of the enzyme, which effectively challenges the paradigm of cold activity coupled with intrinsic thermolability. DATABASE: Structural data are available in the Protein Data Bank database under the accession number 6Y2K.


Assuntos
Proteínas de Bactérias/química , Galactose/química , Marinomonas/química , beta-Galactosidase/química , Sequência de Aminoácidos , Regiões Antárticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Temperatura Baixa , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Marinomonas/enzimologia , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
14.
Mar Drugs ; 18(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233712

RESUMO

Organisms specialized to thrive in cold environments (so-called psychrophiles) produce enzymes with the remarkable ability to catalyze chemical reactions at low temperature. Cold activity relies on adaptive changes in the proteins' sequence and structural organization that result in high conformational flexibility. As a consequence of flexibility, several such enzymes are inherently heat sensitive. Cold-active enzymes are of interest for application in a number of bioprocesses, where cold activity coupled with easy thermal inactivation can be of advantage. We describe the biochemical and functional properties of two glycosyl hydrolases (named LYS177 and LYS188) of family 19 (GH19), identified in the genome of an Antarctic marine Pseudomonas. Molecular evolutionary analysis placed them in a group of characterized GH19 endolysins active on lysozyme substrates, such as peptidoglycan. Enzyme activity peaks at about 25-35 °C and 40% residual activity is retained at 5 °C. LYS177 and LYS188 are thermolabile, with Tm of 52 and 45 °C and half-lives of 48 and 12 h at 37 °C, respectively. Bioinformatics analyses suggest that low heat stability may be associated to temperature-driven increases in local flexibility occurring mainly in a specific region of the polypeptide that is predicted to contain hot spots for aggregation.


Assuntos
Proteínas de Bactérias/metabolismo , Temperatura Baixa , Endopeptidases/metabolismo , Muramidase/metabolismo , Pseudomonas/enzimologia , Regiões Antárticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Endopeptidases/genética , Endopeptidases/isolamento & purificação , Estabilidade Enzimática , Evolução Molecular , Meia-Vida , Muramidase/genética , Muramidase/isolamento & purificação , Pseudomonas/genética , Especificidade por Substrato
15.
N Biotechnol ; 55: 5-11, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31546027

RESUMO

Psychrophilic organisms adapted to cold environments produce molecules of relevance for biotechnological application, in particular enzymes active at low temperatures and ice-binding proteins that control the growth of ice crystals. The use of cold-active enzymes supports low temperature processes that preserve heat labile compounds and can result, in some circumstances, in energy saving. Among the several possible applications in biotransformations, this paper focuses on reactions of relevance for the food industry and in molecular biology, representative of different market segments. Ice-binding proteins reduce tissues damage provoked by ice crystals and are therefore of relevance for frozen foods and for the cryopreservation of organs and tissues in the biomedical sector.


Assuntos
Temperatura Baixa , Enzimas/metabolismo , Gelo , Biocatálise , Criopreservação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA