Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Brain Struct Funct ; 229(8): 1995-2010, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39340562

RESUMO

BACKGROUND: The subgenual gyrus is a promising target for deep brain stimulation (DBS) against depression. However, to optimize this treatment modality, we need translational animal models. AIM: To describe the anatomy and connectivity of the Göttingen minipig subgenual area (sgC). MATERIALS AND METHODS: The frontal pole of 5 minipigs was cryosectioned into 40 µm coronal and horizontal sections and stained with Nissl and NeuN-immunohistochemistry to visualize cytoarchitecture and cortical lamination. Eight animals were unilaterally stereotaxically injected in the sgC with anterograde (BDA) and retrograde (FluoroGold) tracers to reveal the sgC connectivity. RESULTS: In homology with human nomenclature (Brodmann 1909), the minipig sgC can be subdivided into three distinct areas named area 25 (BA25), area 33 (BA33), and indusium griseum (IG). BA25 is a thin agranular cortex, approximately 1 mm thick. Characteristically, perpendicular to the pial surface, cell-poor cortical columns separate the otherwise cell-rich cortex of layer II, III and V. In layer V the cells are of similar size as seen in layer III, while layer VI contains more widely dispersed neurons. BA33 is less differentiated than BA25. Accordingly, the cortex is thinner and displays a complete lack of laminar differentiation due to diffusely arranged small, lightly stained neurons. It abuts the IG, which is a neuron-dense band of heavily stained small neurons separating BA33 directly from the corpus callosum and the posteriorly located septal nuclear area. Due to the limited area size and nearby location to the lateral ventricle and longitudinal cerebral fissure, only 3/8 animals received sgC injections with an antero- and retrograde tracer mixture. Retrograde tracing was seen primarily to the neighbouring ipsilateral ventral- and mPFC areas with some contralateral labelling as well. Prominent projections were furthermore observed from the ipsilateral insula, the medial aspect of the amygdala and the hippocampal formation, diencephalon and the brainstem ventral tegmental area. Anterograde tracing revealed prominent projections to the neighbouring medial prefrontal, mPFC and cingulate cortex, while moderate staining was noted in the hippocampus and adjoining piriform cortex. CONCLUSION: The minipig sgC displays a cytoarchitectonic pattern and connectivity like the human and may be well suited for further translational studies on BA25-DBS against depression.


Assuntos
Porco Miniatura , Animais , Porco Miniatura/anatomia & histologia , Suínos , Vias Neurais/anatomia & histologia , Vias Neurais/citologia , Masculino , Neurônios/citologia , Feminino , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/citologia
2.
Brain Spine ; 4: 102813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681174

RESUMO

Introduction: There is an increasing focus on the prevention of secondary injuries following traumatic spinal cord injury (TSCI), especially through improvement of spinal cord perfusion and immunological modulation. Such therapeutic strategies require translational and controlled animal models of disease progression of the acute phases of human TSCI. Research question: Is it possible to establish a 72-h sedated porcine model of incomplete thoracic TSCI, enabling controlled use of continuous, invasive, and non-invasive modalities during the entire sub-acute phase of TSCI? Material and methods: A sham-controlled trial was conducted to establish the model, and 10 animals were assigned to either sham or TSCI. All animals underwent a laminectomy, and animals in the TSCI group were subjected to a weight-drop injury. Animals were then kept sedated for 72 h. The amount of injury was assessed by ex-vivo measures MRI-based fiber tractography, histology and immunohistochemistry. Results: In all animals, we were successful in maintaining sedation for 72 h without comprising vital physiological parameters. The MRI-based fiber tractography showed that all TSCI animals revealed a break in the integrity of spinal neurons, whereas histology demonstrated no transversal sections of the spine with complete injury. Notably, some animals displayed signs of secondary ischemic tissue in the cranial and caudal sections. Discussion and conclusions: This study succeeded in producing a porcine model of incomplete TSCI, which was physiologically stable up to 72 h. We believe that this TSCI model will constitute a potential translational model to study the pathophysiology secondary to TSCI in humans.

3.
Biomolecules ; 13(4)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37189421

RESUMO

The noradrenaline system attracts attention for its role in mood disorders and neurodegenerative diseases but the lack of well-validated methods impairs our understanding when assessing its function and release in vivo. This study combines simultaneous positron emission tomography (PET) and microdialysis to explore if [11C]yohimbine, a selective antagonist radioligand of the α2 adrenoceptors, may be used to assess in vivo changes in synaptic noradrenaline during acute pharmacological challenges. Anesthetised Göttingen minipigs were positioned in a head holder in a PET/CT device. Microdialysis probes were placed in the thalamus, striatum and cortex and dialysis samples were collected every 10 min. Three 90 min [11C]yohimbine scans were acquired: at baseline and at two timepoints after the administration of amphetamine (1-10 mg/kg), a non-specific releaser of dopamine and noradrenaline, or nisoxetine (1 mg/kg), a specific noradrenaline transporter inhibitor. [11C]yohimbine volumes of distribution (VT) were obtained using the Logan kinetic model. Both challenges induced a significant decrease in yohimbine VT, with time courses reflecting their different mechanisms of action. Dialysis samples revealed a significant increase in noradrenaline extracellular concentrations after challenge and an inverse correlation with changes in yohimbine VT. These data suggest that [11C]yohimbine can be used to evaluate acute variations in synaptic noradrenaline concentrations after pharmacological challenges.


Assuntos
Norepinefrina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Microdiálise , Norepinefrina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Diálise Renal , Porco Miniatura , Ioimbina/metabolismo
5.
Neurotoxicology ; 91: 166-176, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569565

RESUMO

The Göttingen minipig is a large animal with a gyrencephalic brain that expresses -complex behavior, making it an attractive model for Parkinson's disease research. Here, we investigate the temporal evolution of presynaptic dopaminergic function for 14 months after injections of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the minipig using a multi-tracer longitudinal positron emission tomography (PET) design. We injected seven sedated minipigs with 1-2 mg/kg of MPTP, and two with saline, three times a week over four weeks. We monitored behavioral deficits using a validated motor scale and walking mat. Brains were imaged with (+)-⍺-[11C]-dihydrotetrabenazine ([11C]-DTBZ) and [18F]-dihydroxyphenylalanine ([18F]-FDOPA) PET at baseline and 1, 3, 10 and 14 months after MPTP injection, and immunohistochemistry was used to assess nigral cell loss. The minipigs showed mild bradykinesia and impaired coordination at early timepoints after MPTP. PET revealed decreases of striatal [11C]-DTBZ and [18F]-FDOPA uptake post-MPTP with partial spontaneous recovery of [18F]-FDOPA after 10 months. Postmortem analysis estimated an MPTP-induced nigral loss of 57% tyrosine hydroxylase+ and 43% Nissl-stained cells. Normal motor function despite substantial damage to the dopaminergic system is consistent with prodromal Parkinson's disease, and offers an opportunity for testing disease-modifying therapies. However, partial spontaneous recovery of dopamine terminal function must be taken into account in future studies.


Assuntos
Dopamina , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Corpo Estriado/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Substância Negra , Suínos , Porco Miniatura
6.
Brain Stimul ; 15(3): 586-597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35395424

RESUMO

BACKGROUND: Modulation of pathological neural circuit activity in the brain with a minimum of complications is an area of intense interest. OBJECTIVE: The goal of the study was to alter neurons' physiological states without apparent damage of cellular integrity using stereotactic radiosurgery (SRS). METHODS: We treated a 7.5 mm-diameter target on the visual cortex of Göttingen minipigs with doses of 40, 60, 80, and 100 Gy. Six months post-irradiation, the pigs were implanted with a 9 mm-wide, eight-shank multi-electrode probe, which spanned the radiation focus as well as the low-exposure neighboring areas. RESULTS: Doses of 40 Gy led to an increase of spontaneous firing rate, six months post-irradiation, while doses of 60 Gy and greater were associated with a decrease. Subjecting the animals to visual stimuli resulted in typical visual evoked potentials (VEP). At 40 Gy, a significant reduction of the P1 peak time, indicative of higher network excitability was observed. At 80 Gy, P1 peak time was not affected, while a minor reduction at 60 Gy was seen. No distance-dependent effects on spontaneous firing rate, or on VEP were observed. Post-mortem histology revealed no evidence of necrosis at doses below 60 Gy. In an in vitro assay comprising of iPS-derived human neuron-astrocyte co-cultures, we found a higher vulnerability of inhibitory neurons than excitatory neurons with respect to radiation, which might provide the cellular mechanism of the disinhibitory effect observed in vivo. CONCLUSION: We provide initial evidence for a rather circuit-wide, long-lasting disinhibitory effect of low sub-ablative doses of SRS.


Assuntos
Potenciais Evocados Visuais , Radiocirurgia , Animais , Encéfalo , Radiação Ionizante , Radiocirurgia/métodos , Suínos , Porco Miniatura
7.
Front Neural Circuits ; 15: 716145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899195

RESUMO

Background: Deep brain stimulation (DBS) of the dorsal subthalamic nucleus (STN) is a validated neurosurgical treatment of Parkinson's Disease (PD). To investigate the mechanism of action, including potential DBS induced neuroplasticity, we have previously used a minipig model of Parkinson's Disease, although the basal ganglia circuitry was not elucidated in detail. Aim: To describe the cortical projections from the primary motor cortex (M1) to the basal ganglia and confirm the presence of a cortico-striatal pathway and a hyperdirect pathway to the subthalamic nucleus, respectively, which is known to exist in primates. Materials and Methods: Five female Göttingen minipigs were injected into the primary motor cortex (n = 4) and adjacent prefrontal cortex (n = 1) with the anterograde neuronal tracer, Biotinylated Dextran Amine (BDA). 4 weeks later the animals were sacrificed and the brains cryosectioned into 30 µm thick coronal sections for subsequent microscopic analysis. Results: The hyperdirect axonal connections from the primary motor cortex were seen to terminate in the dorsolateral STN, whereas the axonal projections from the prefrontal cortex terminated medially in the STN. Furthermore, striatal tracing from the motor cortex was especially prominent in the dorsolateral putamen and less so in the dorsolateral caudate nucleus. The prefrontal efferents were concentrated mainly in the caudate nucleus and to a smaller degree in the juxtacapsular dorsal putamen, but they were also found in the nucleus accumbens and ventral prefrontal cortex. Discussion: The organization of the Göttingen minipig basal ganglia circuitry is in accordance with previous descriptions in primates. The existence of a cortico-striatal and hyperdirect basal ganglia pathway in this non-primate, large animal model may accordingly permit further translational studies on STN-DBS induced neuroplasticity of major relevance for future DBS treatments.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Núcleo Subtalâmico , Animais , Feminino , Córtex Pré-Frontal , Primatas , Suínos , Porco Miniatura
8.
Brain Struct Funct ; 226(7): 2375-2386, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34235563

RESUMO

The pituitary is involved in the regulation of endocrine homeostasis. Therefore, animal models of pituitary disease based on a thorough knowledge of pituitary anatomy are of great importance. Accordingly, we aimed to perform a qualitative and quantitative description of polypeptide hormone secreting cellular components of the Göttingen minipig adenohypophysis using immunohistochemistry and stereology. Estimates of the total number of cells immune-stained for adrenocorticotrophic hormone (ACTH), prolactin (PRL), and growth hormone (GH) were obtained with the optical fractionator technique using Stereo Investigator software. Moreover, 3D reconstructions of cell distribution were made. We estimated that the normal minipig adenohypophysis contains, on average, 5.6 million GH, 3.5 million PRL, and 2.4 million ACTH producing cells. The ACTH producing cells were widely distributed, while the PRL and GH producing cells were located in clusters in the central and lateral regions of the adenohypophysis. The morphology of the hormone producing cells also differs. We visualized a clear difference in the numerical density of hormone producing cells throughout the adenohypophysis. The relative proportions of the cells analyzed in our experiment are comparable to those observed in humans, primates, and rodents; however, the distribution of cells differs among species. The distribution of GH cells in the minipig is similar to that in humans, while the PRL and ACTH cell distributions differ. The volume of the pituitary is slightly smaller than that of humans. These data provide a framework for future large animal experimentation on pituitary function in health and disease.


Assuntos
Adeno-Hipófise , Hormônio Adrenocorticotrópico , Animais , Hormônio do Crescimento , Hormônio do Crescimento Humano , Imuno-Histoquímica , Hormônios Peptídicos , Adeno-Hipófise/metabolismo , Prolactina , Suínos , Porco Miniatura/metabolismo
9.
Eur Spine J ; 30(10): 3028-3035, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34170417

RESUMO

PURPOSE: To evaluate the causality between interventions on spinal cord perfusion pressure and neurological outcome in traumatic spinal cord injury. METHODS: A systematic review was conducted in concordance with PRISMA guidelines. The literature was found in the EMBASE, PUBMED, SCOPUS, and WEB OF SCIENCE. Eligible studies included those that reported measurements and interventions on the spinal cord perfusion pressure in either animals or patients suffering from spinal cord injury. Only studies that reported a clinical or relevant clinical outcome measure (i.e., neurophysiology) were included. RESULTS: The search yielded 795 unique records, and six studies were included after careful review. These studies suggested a positive correlation between spinal cord perfusion pressure and neurological outcome, but conclusions on causality could not be made. CONCLUSION: In spite of growing indications that neurological outcomes are related to the spinal cord perfusion pressure in traumatic spinal cord injuries, a solid conclusion cannot be made due to the limited literature available. Additional well-designed studies are needed to address this issue.


Assuntos
Traumatismos da Medula Espinal , Animais , Humanos , Perfusão , Traumatismos da Medula Espinal/terapia
10.
Front Hum Neurosci ; 15: 618626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613212

RESUMO

Recording and manipulating neuronal ensemble activity is a key requirement in advanced neuromodulatory and behavior studies. Devices capable of both recording and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally operate un-tethered and allow chronic longitudinal manipulations in the freely moving animal. In this study, we designed a new intracortical BCI feasible of telemetric recording and stimulating local gray and white matter of visual neural circuit after irradiation exposure. To increase the translational reliance, we put forward a Göttingen minipig model. The animal was stereotactically irradiated at the level of the visual cortex upon defining the target by a fused cerebral MRI and CT scan. A fully implantable neural telemetry system consisting of a 64 channel intracortical multielectrode array, a telemetry capsule, and an inductive rechargeable battery was then implanted into the visual cortex to record and manipulate local field potentials, and multi-unit activity. We achieved a 3-month stability of the functionality of the un-tethered BCI in terms of telemetric radio-communication, inductive battery charging, and device biocompatibility for 3 months. Finally, we could reliably record the local signature of sub- and suprathreshold neuronal activity in the visual cortex with high bandwidth without complications. The ability to wireless induction charging combined with the entirely implantable design, the rather high recording bandwidth, and the ability to record and stimulate simultaneously put forward a wireless BCI capable of long-term un-tethered real-time communication for causal preclinical circuit-based closed-loop interventions.

11.
J Cereb Blood Flow Metab ; 41(6): 1301-1312, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32960687

RESUMO

The positron emission tomography (PET) tracer [18F]GE-179 binds to the phencyclidine (PCP) site in the open N-methyl-D-aspartate receptor ion channel (NMDAR-IC). To demonstrate that PET can visualise increased [18F]GE-179 uptake by active NMDAR-ICs and that this can be blocked by the PCP antagonist S-ketamine, 15 rats had an electrode unilaterally implanted in their ventral hippocampus. Seven rats had no stimulation, five received pulsed 400 µA supra-threshold 60 Hz stimulation alone, and three received intravenous S-ketamine injection prior to stimulation. Six other rats were not implanted. Each rat had a 90 min [18F]GE-179 PET scan. Stimulated rats had simultaneous depth-EEG recordings of induced seizure activity. [18F]GE-179 uptake (volume of distribution, VT) was compared between hemispheres and between groups. Electrical stimulation induced a significant increase in [18F]GE-179 uptake at the electrode site compared to the contralateral hippocampus (mean 22% increase in VT, p = 0.0014) and to non-stimulated comparator groups. Rats injected with S-ketamine prior to stimulation maintained non-stimulated levels of [18F]GE-179 uptake during stimulation. In conclusion, PET visualisation of focal [18F]GE-179 uptake during electrically activated NMDAR-ICs and the demonstration of specificity for PCP sites by blockade with S-ketamine support the in vivo utility of [18F]GE-179 PET as a use-dependent marker of NMDAR-IC activation.


Assuntos
Radioisótopos de Flúor , Hipocampo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Estimulação Elétrica , Masculino , Ratos , Ratos Wistar
12.
Front Hum Neurosci ; 14: 577465, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328931

RESUMO

The tsunami effect of the COVID-19 pandemic is affecting many aspects of scientific activities. Multidisciplinary experimental studies with international collaborators are hindered by the closing of the national borders, logistic issues due to lockdown, quarantine restrictions, and social distancing requirements. The full impact of this crisis on science is not clear yet, but the above-mentioned issues have most certainly restrained academic research activities. Sharing innovative solutions between researchers is in high demand in this situation. The aim of this paper is to share our successful practice of using web-based communication and remote control software for real-time long-distance control of brain stimulation. This solution may guide and encourage researchers to cope with restrictions and has the potential to help expanding international collaborations by lowering travel time and costs.

13.
Sci Rep ; 10(1): 16223, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004849

RESUMO

Stereotactic radiosurgery (SRS) has proven an effective tool for the treatment of brain tumors, arteriovenous malformation, and functional conditions. However, radiation-induced therapeutic effect in viable cells in functional SRS is also suggested. Evaluation of the proposed modulatory effect of irradiation on neuronal activity without causing cellular death requires the knowledge of radiation dose tolerance at very small tissue volume. Therefore, we aimed to establish a porcine model to study the effects of ultra-high radiosurgical doses in small volumes of the brain. Five minipigs received focal stereotactic radiosurgery with single large doses of 40-100 Gy to 5-7.5 mm fields in the left primary motor cortex and the right subcortical white matter, and one animal remained as unirradiated control. The animals were followed-up with serial MRI, PET scans, and histology 6 months post-radiation. We observed a dose-dependent relation of the histological and MRI changes at 6 months post-radiation. The necrotic lesions were seen in the grey matter at 100 Gy and in white matter at 60 Gy. Furthermore, small volume radiosurgery at different dose levels induced vascular, as well as neuronal cell changes and glial cell remodeling.


Assuntos
Encéfalo/cirurgia , Necrose , Lesões por Radiação/patologia , Radiocirurgia/efeitos adversos , Animais , Encéfalo/patologia , Feminino , Imageamento Tridimensional/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/etiologia , Suínos , Porco Miniatura
14.
Acta Neurobiol Exp (Wars) ; 80(3): 273-285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32990285

RESUMO

The discovery and application of induced pluripotent stem cells (iPSCs) provide a novel treatment modality for diseases, which remain incurable. Particularly, in the treatment of neurodegenerative diseases such as Parkinson's disease (PD), iPSC­technology holds an interesting prospect for replacement therapy. Currently, the prognostic improvement of PD is limited and relies on symptomatic treatment. However, the symptomatic dopamine­replacement therapies lose their long­duration responses, and novel regenerative treatment modalities are needed. Animal models have provided valuable information and identified pathogenic mechanisms underlying PD but the lack of models that recapitulate the complex pathophysiology of the disease postpones further development of novel therapeutics. This review summarizes the possible uses of iPSCs in PD and discusses the future investigations needed for iPSCs as a possible treatment of PD patients.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Doenças Neurodegenerativas/patologia , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Animais , Transplante de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Doenças Neurodegenerativas/terapia
15.
Mol Imaging Biol ; 22(5): 1290-1300, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32514885

RESUMO

PURPOSE: Loss of neuronal synapse function is associated with a number of brain disorders. The [11C]UCB-J positron emission tomography (PET) tracer allows for in vivo examination of synaptic density, as it binds to synaptic vesicle glycoprotein 2A (SV2A) expressed in presynaptic terminals. Here, we characterise [11C]UCB-J imaging in Göttingen minipigs. PROCEDURES: Using PET imaging, we examined tracer specificity and compared kinetic models. We explored the use of a standard blood curve and centrum semiovale white matter as a reference region. We compared in vivo [11C]UCB-J PET imaging to in vitro autoradiography, Western blotting and real-time quantitative polymerase chain reaction. RESULTS: The uptake kinetics of [11C]UCB-J could be described using a 1-tissue compartment model and blocking of SV2A availability with levetiracetam showed dose-dependent specific binding. Population-based blood curves resulted in reliable [11C]UCB-J binding estimates, while it was not possible to use centrum semiovale white matter as a non-specific reference region. Brain [11C]UCB-J PET signals correlated well with [3H]UCB-J autoradiography and SV2A protein levels. CONCLUSIONS: [11C]UCB-J PET is a valid in vivo marker of synaptic density in the minipig brain, with binding values close to those reported for humans. Minipig models of disease could be valuable for investigating the efficacy of putative neuroprotective agents for preserving synaptic function in future non-invasive, longitudinal studies.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Piridinas/química , Pirrolidinonas/química , Animais , Autorradiografia , Imageamento por Ressonância Magnética , Proteínas do Tecido Nervoso/metabolismo , Suínos , Porco Miniatura
16.
Brain Stimul ; 13(4): 1071-1078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32388196

RESUMO

BACKGROUND: No PET radioligand has yet demonstrated the capacity to map glutamate N-methyl-d-aspartate receptor ion channel (NMDAR-IC) function. [18F]GE-179 binds to the phencyclidine (PCP) site in open NMDAR-ICs and potentially provides a use-dependent PET biomarker of these ion channels. OBJECTIVE: To show [18F]GE-179 PET can detect increased NMDAR-IC activation during electrical deep brain stimulation (DBS) of pig hippocampus. METHODS: Six minipigs had an electrode implanted into their right hippocampus. They then had a baseline [18F]GE-179 PET scan with DBS turned off followed by a second scan with DBS turned on. Brain [18F]GE-179 uptake at baseline and then during DBS was measured with PET. Cerebral blood flow (CBF) was measured with [15O]H2O PET at baseline and during DBS and parametric CBF images were generated to evaluate DBS induced CBF changes. Functional effects of injecting the PCP blocker MK-801 were also evaluated. Electrode positions were later histologically verified. RESULTS: DBS induced a 47.75% global increase in brain [18F]GE-179 uptake (p = 0.048) compared to baseline. Global CBF was unchanged by hippocampal DBS. [18F]GE-179 PET detected a 5% higher uptake in the implanted compared with the non-implanted temporo-parietal cortex at baseline (p = 0.012) and during stimulation (p = 0.022). Administration of MK-801 before DBS failed to block [18F]GE-179 uptake during stimulation. CONCLUSION: PET detected an increase in global brain [18F]GE-179 uptake during unilateral hippocampal DBS while CBF remained unchanged. These findings support that [18F]GE-179 PET provides a use-dependent marker of abnormal NMDAR-IC activation.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Encéfalo/metabolismo , Estimulação Encefálica Profunda , Radioisótopos de Flúor , Masculino , N-Metilaspartato/metabolismo , Compostos Radiofarmacêuticos , Suínos
17.
Brain Struct Funct ; 225(3): 1055-1071, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32246243

RESUMO

The limbic system encompasses a collection of brain areas primarily involved in higher cognitive and emotional processing. Altered function in the limbic circuitry may play a major role in various psychiatric disorders. This study aims to provide a high-quality ex vivo diffusion-weighted MRI (DWI) tractographic overview of the Göttingen minipig limbic system pathways, which are currently not well described. This may facilitate future translational large animal studies. The study used previously obtained post-mortem DWI scans in 3 female Göttingen minipigs aging 11-15 months. The tractography performed on the DWI data set was made using a probabilistic algorithm, and regions of interest (ROIs) were defined in accordance with a histological atlas. The investigated pathways included the fornix, mammillothalamic tract, stria terminalis, stria medullaris, habenulo-interpeduncular tract, and cingulum. All the investigated limbic connections could be visualized with a high detail yielding a comprehensive three-dimensional overview, which was emphasized by the inclusion of video material. The minipig limbic system pathways displayed using tractography closely resembled what was previously described in both human studies and neuronal tracing studies from other mammalian species. We encountered well-known inherent methodological challenges of tractography, e.g., partial volume effects and complex white matter regions, which may have contributed to derouted false-positive streamlines and the failure to visualize some of the minor limbic pathway ramifications. This underlines the importance of preexisting anatomical knowledge. Conclusively, we have, for the first time, provided an overview and substantial insight of the Göttingen minipig limbic system.


Assuntos
Sistema Límbico/anatomia & histologia , Porco Miniatura/anatomia & histologia , Animais , Imagem de Difusão por Ressonância Magnética , Feminino , Sistema Límbico/diagnóstico por imagem , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Suínos , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
18.
Heliyon ; 5(11): e02892, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31844758

RESUMO

BACKGROUND: Adult onset growth hormone (GH) deficiency (AGDH) is a potentially underdiagnosed condition, caused by damage to the pituitary gland. AGHD is treated with growth hormone replacement therapy. A large variety of clinical symptoms and changes in the metabolic homeostasis can be observed and quantified. New large animal models are needed for future drug development. NEW METHOD: In this study, we evaluate methods for a new large non-primate animal model of GH deficiency in post pubertal Göttingen Minipigs (minipig). Lesions in the pituitary gland were made by stereotaxic monopolar thermo-coagulation guided by magnetic resonance imaging (MRI), and pituitary function was evaluated using insulin tolerance test (ITT) with measurements of growth hormone secretion induced by hypoglycemia. RESULTS: Lesions were successfully applied to the pituitary gland without any damage to surrounding tissue including the hypothalamus, which was confirmed by post-operative MRI and post mortem histology. Plasma levels of GH during ITT showed no decrease in secreted levels one week after surgery compared to levels obtained before surgery. COMPARISON WITH EXISTING METHODS: Compared to other GH insufficiency models, eloquent brain tissue is spared. Furthermore, alternatively to rodent models, a large animal model would allow the use of human intended equipment to evaluate disease. Using the minipig avoids social, economical and ethical issues, compared with primates. CONCLUSION: The lesions did not remove all GH production, but proof of concept is demonstrated. In addition, the ITT is presented as a safe and efficient method to diagnose GH deficiency in minipigs.

19.
Sci Rep ; 9(1): 16918, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729425

RESUMO

Excessive sucrose consumption elicits addiction-like craving that may underpin the obesity epidemic. Opioids and dopamine mediate the rewarding effects of drugs of abuse, and of natural rewards from stimuli such as palatable food. We investigated the effects of sucrose using PET imaging with [11C]carfentanil (µ-opioid receptor agonist) and [11C]raclopride (dopamine D2/3 receptor antagonist) in seven female anesthetized Göttingen minipigs. We then gave minipigs access to sucrose solution for one hour on 12 consecutive days and performed imaging again 24 hours after the final sucrose access. In a smaller sample of five minipigs, we performed an additional [11C]carfentanil PET session after the first sucrose exposure. We calculated voxel-wise binding potentials (BPND) using the cerebellum as a region of non-displaceable binding, analyzed differences with statistical non-parametric mapping, and performed a regional analysis. After 12 days of sucrose access, BPND of both tracers had declined significantly in striatum, nucleus accumbens, thalamus, amygdala, cingulate cortex and prefrontal cortex, consistent with down-regulation of receptor densities. After a single exposure to sucrose, we found decreased binding of [11C]carfentanil in nucleus accumbens and cingulate cortex, consistent with opioid release. The lower availability of opioid and dopamine receptors may explain the addictive potential associated with intake of sucrose.


Assuntos
Encéfalo/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Receptores Opioides mu/metabolismo , Sacarose/metabolismo , Animais , Biomarcadores , Encéfalo/diagnóstico por imagem , Neuroimagem Funcional , Imagem Molecular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Suínos , Fatores de Tempo
20.
Heliyon ; 5(4): e01530, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31183415

RESUMO

[This corrects the article DOI: 10.1016/j.heliyon.2019.e01363.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA