Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Transl Oncol ; 10(2): 255-261, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28214773

RESUMO

BACKGROUND: The skeleton is the most common site of colonization by metastatic cancers. Zoledronic acid (ZA) has been shown to be effective for the treatment of bone metastases regardless of whether the bone lesions are osteolytic or osteoblastic. Biochemical markers of bone turnover may be useful tools to quantify the degree of bone remodeling in the presence of bone metastases. The aim of this work was to establish the correlation between tumor dispersion (bioluminescence) and biochemical markers of bone turnover in two osteolytic and osteoblastic metastasis models in mice. METHODS: The A549M1 cell line that produces osteolytic metastases and the LADOB cell line extracted from a patient with a lung carcinoma and osteoblastic metastases cells were retrovirally transduced with a luciferase reporter gene for in vivo image analysis. Forty-four-week-old mice were inoculated in the left cardiac ventricle with A549M1 or LADOB cells. Twenty mouse of each group were treated with a single dose of ZA (70 µg/kg) 5 days after i.c. Ten animals of each group were sacrificed at 21 and 28 days postinoculation in A549M1 and 60 and 75 days in the LADOB assay. Bioluminescence analysis was quantified 7, 14, 21 ,and 28 days postinoculation in A549M1 mice and 33, 45, 60, and 75 days after inoculation in LADOB mice. Osteocalcin (BGP), aminoterminal propeptide of procollagen I (PINP), carboxiterminal telopeptide of type I collagen (CTX), and 5b isoenzyme of tartrate-resistant acid phosphatase were measured by ELISA (IDS, UK). RESULTS: Bioluminescence imaging revealed a significant increase of tumor burden on time in both osteolytic and osteoblastic mice models. ZA administration resulted in a significant decrease in tumor burden at 21 and 28 days in the A549M1 animals and 60 and 70 days postinoculation in the LADOB line. Biomarkers levels were significantly increased in the untreated group at every point in the osteolytic model. In the osteoblastic model, 2 months after inoculation, all biomarkers were significantly increased. However, 2.5 months postinoculation, only PINP and CTX were significantly increased. Serum bone remodeling markers decreased in ZA-treated mice as compared with tumor groups in both models. With respect to the correlation between bone turnover markers and tumor burden, in the osteolytic model, PINP and BGP demonstrate a strong correlation with bioluminescence in both tumoral and ZA animals, and only CTX was significantly associated with bioluminescence in the group of animals that were not treated with ZA. CONCLUSIONS: We found that the best biomarkers for the diagnosis of both osteolytic and osteoblastic metastasis are formation markers, especially BGP. Moreover, these markers can be useful in the follow-up of the treatment with ZA in both types of metastasis.

2.
J Pathol ; 239(4): 438-49, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27172275

RESUMO

Osteosarcoma (OS) is the most prevalent osseous tumour in children and adolescents and, within this, lung metastases remain one of the factors associated with a dismal prognosis. At present, the genetic determinants driving pulmonary metastasis are poorly understood. We adopted a novel strategy using robust filtering analysis of transcriptomic profiling in tumour osteoblastic cell populations derived from human chemo-naive primary tumours displaying extreme phenotypes (indolent versus metastatic) to uncover predictors associated with metastasis and poor survival. We identified MGP, encoding matrix-Gla protein (MGP), a non-collagenous matrix protein previously associated with the inhibition of arterial calcification. Using different orthotopic models, we found that ectopic expression of Mgp in murine and human OS cells led to a marked increase in lung metastasis. This effect was independent of the carboxylation of glutamic acid residues required for its physiological role. Abrogation of Mgp prevented lung metastatic activity, an effect that was rescued by forced expression. Mgp levels dramatically altered endothelial adhesion, trans-endothelial migration in vitro and tumour cell extravasation ability in vivo. Furthermore, Mgp modulated metalloproteinase activities and TGFß-induced Smad2/3 phosphorylation. In the clinical setting, OS patients who developed lung metastases had high serum levels of MGP at diagnosis. Thus, MGP represents a novel adverse prognostic factor and a potential therapeutic target in OS. Microarray datasets may be found at: http://bioinfow.dep.usal.es/osteosarcoma/ Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias Ósseas/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neoplasias Pulmonares/secundário , Osteossarcoma/secundário , Animais , Neoplasias Ósseas/metabolismo , Movimento Celular/fisiologia , Humanos , Neoplasias Pulmonares/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Nus , Osteossarcoma/metabolismo , Fosforilação , Prognóstico , Proteínas Smad/metabolismo , Proteína de Matriz Gla
3.
Mol Oncol ; 8(3): 689-703, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24593875

RESUMO

Bone metastasis represents one of the most deleterious clinical consequences arising in the context of many solid tumors. Severe osteolysis results from tumor cell colonization of the bone compartment, a process which entails reciprocal exchange of soluble signals between tumor cells and their osseous microenvironment. Recent evidence indicates that tumor-intrinsic miRNAs are pleiotropic regulators of gene expression. But they are also frequently released in exosome-like vesicles (ELV). Yet the functional relevance of the transference of tumor-derived ELV and their miRNA cargo to the extracellular milieu during osseous colonization is unknown. Comparative transcriptomic profiling using an in vivo murine model of bone metastasis identified a repressed miRNA signature associated with high prometastatic activity. Forced expression of single miRNAs identified miR-192 that markedly appeased osseous metastasis in vivo, as shown by X-ray, bioluminescence imaging and microCT scans. Histological examination of metastatic lesions revealed impaired tumor-induced angiogenesis in vivo, an effect that was associated in vitro with decreased hallmarks of angiogenesis. Isolation and characterization of ELV by flow cytometry, Western blot analysis, transmission electron microscopy and nanoparticle tracking analysis revealed the ELV cargo enrichment in miR-192. Consistent with these findings, fluorescent labeled miR-192-enriched-ELV showed the in vitro transfer and release of miR-192 in target endothelial cells and abrogation of the angiogenic program by repression of proangiogenic IL-8, ICAM and CXCL1. Moreover, in vivo infusion of fluorescent labeled ELV efficiently targeted cells of the osseous compartment. Furthermore, treatment with miR-192 enriched ELV in a model of in vivo bone metastasis pre-conditioned osseous milieu and impaired tumor-induced angiogenesis, thereby reducing the metastatic burden and tumor colonization. Changes in the miRNA-cargo content within ELV represent a novel mechanism heavily influencing bone metastatic colonization, which is most likely relevant in other target organs. Mechanistic mimicry of this phenomenon by synthetic nanoparticles could eventually emerge as a novel therapeutic approach.


Assuntos
Adenocarcinoma/patologia , Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Exossomos/patologia , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Exossomos/genética , Exossomos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , MicroRNAs/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
4.
Bone ; 52(1): 532-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23142363

RESUMO

Recent evidence suggests that miRNAs could be used as serum markers in a variety of normal and pathological conditions. In this study, we aimed to identify novel miRNAs associated with skeletal metastatic disease in a preclinical model of lung cancer bone metastasis. We assessed the validity of these miRNAs as reliable serum biochemical markers to monitor the extent of disease and response to treatment in comparison to imaging techniques and standard biochemical markers of bone turnover. Using a murine model of human lung cancer bone metastasis after zoledronic acid (ZA) treatment, PINP (procollagen I amino-terminal propeptide) was the only marker that exhibited a strong correlation with osteolytic lesions and tumor burden at early and late stages of bone colonization. In contrast, BGP (osteocalcin) and CTX (carboxyterminal telopeptide) demonstrated a strong correlation only at late stages. We performed qPCR based screening of a panel of 380 human miRNAs and quantified bone metastatic burden using micro-CT scans, X-rays and bioluminescence imaging. Interestingly, levels of miR-326 strongly associated with tumor burden and PINP in vehicle-treated animals, whereas no association was found in ZA-treated animals. Only miR-193 was associated with biochemical markers PINP, BGP and CTX in ZA-treated animals. Consistently, miR-326 and PINP demonstrated a strong correlation with tumor burden. Our findings, taken together, indicate that miR-326 could potentially serve as a novel biochemical marker for monitoring bone metastatic progression.


Assuntos
Neoplasias Ósseas/secundário , Remodelação Óssea , Neoplasias Pulmonares/patologia , Biomarcadores , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Microtomografia por Raio-X
5.
PLoS One ; 7(2): e32451, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384256

RESUMO

Chromosomal translocations in tumors frequently produce fusion genes coding for chimeric proteins with a key role in oncogenesis. Recent reports described a BCR-JAK2 fusion gene in fatal chronic and acute myeloid leukemia, but the functional behavior of the chimeric protein remains uncharacterized. We used fluorescence in situ hybridization and reverse transcription polymerase chain reaction (RT-PCR) assays to describe a BCR-JAK2 fusion gene from a patient with acute lymphoblastic leukemia. The patient has been in complete remission for six years following treatment and autologous transplantation, and minimal residual disease was monitored by real-time RT-PCR. BCR-JAK2 codes for a protein containing the BCR oligomerization domain fused to the JAK2 tyrosine-kinase domain. In vitro analysis of transfected cells showed that BCR-JAK2 is located in the cytoplasm. Transduction of hematopoietic Ba/F3 cells with retroviral vectors carrying BCR-JAK2 induced IL-3-independent cell growth, constitutive activation of the chimeric protein as well as STAT5 phosphorylation and translocation to the nuclei, where Bcl-xL gene expression was elicited. Primary mouse progenitor cells transduced with BCR-JAK2 also showed increased proliferation and survival. Treatment with the JAK2 inhibitor TG101209 abrogated BCR-JAK2 and STAT5 phosphorylation, decreased Bcl-xL expression and triggered apoptosis of transformed Ba/F3 cells. Therefore, BCR-JAK2 is a novel tyrosine-kinase with transforming activity. It deregulates growth factor-dependent proliferation and cell survival, which can be abrogated by the TG101209 inhibitor. Moreover, transformed Ba/F3 cells developed tumors when injected subcutaneously into nude mice, thus proving the tumorigenic capacity of BCR-JAK2 in vivo. Together these findings suggest that adult and pediatric patients with BCR-ABL-negative leukemia and JAK2 overexpression may benefit from targeted therapies.


Assuntos
Janus Quinase 2/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-bcr/metabolismo , Animais , Apoptose , Linhagem Celular , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fosforilação , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteína bcl-X/metabolismo
6.
Am J Respir Crit Care Med ; 186(1): 96-105, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22461368

RESUMO

RATIONALE: Efficient metastasis requires survival and adaptation of tumor cells to stringent conditions imposed by the extracellular milieu. Identification of critical survival signaling pathways in tumor cells might unveil novel targets relevant in disease progression. OBJECTIVES: To investigate the contribution of activated protein C (APC) and its receptor (endothelial protein C receptor [EPCR]) in animal models of lung cancer metastasis and in patients with lung adenocarcinoma. METHODS: Signaling pathway triggered by APC/EPCR and its relevance in apoptosis was studied in vitro. Functional significance was assessed by silencing and blocking antibodies in several in vivo models of lung cancer metastasis in athymic nude Foxn1(nu) mice. We examined EPCR levels using a microarray dataset of 107 patients. Immunohistochemical analysis was performed in an independent cohort of 295 patients with lung adenocarcinoma. MEASUREMENTS AND MAIN RESULTS: The effects of APC binding to EPCR rapidly triggered Akt and extracellular signal-regulated kinase signaling pathways, leading to attenuated in vitro apoptosis. In vivo, silencing of EPCR expression or blocking APC/EPCR interaction reduced infiltration in the target organ, resulting in impaired prometastatic activity. Moreover, overexpression of EPCR induced an increased metastatic activity to target organs. Analysis of clinical samples showed a robust association between high EPCR levels and poor prognosis, particularly in stage I patients. CONCLUSIONS: EPCR and its ligand APC promote cell survival that contributes to tumor cell endurance to stress favoring prometastatic activity of lung adenocarcinoma. EPCR/APC is a novel target of relevance in the clinical outcome of early-stage lung cancer.


Assuntos
Adenocarcinoma/secundário , Fatores de Coagulação Sanguínea/fisiologia , Neoplasias Pulmonares/patologia , Proteína C/fisiologia , Receptores de Superfície Celular/fisiologia , Animais , Apoptose/fisiologia , Sobrevivência Celular , Microambiente Celular/fisiologia , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Camundongos , Prognóstico , Análise Serial de Proteínas , Transdução de Sinais/fisiologia
7.
Haematologica ; 97(8): 1234-41, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22315494

RESUMO

BACKGROUND: Despite the discovery of the p.V617F in JAK2, the molecular pathogenesis of some chronic myeloproliferative neoplasms remains unclear. Although very rare, different studies have identified CBL (Cas-Br-Murine ecotropic retroviral transforming sequence) mutations in V617FJAK2-negative patients, mainly located in the RING finger domain. In order to determine the frequency of CBL mutations in these diseases, we studied different regions of all CBL family genes (CBL, CBLB and CBLC) in a selected group of patients with myeloproliferative neoplasms. We also included V617FJAK2-positive patients to check whether mutations in CBL and JAK2 are mutually exclusive events. DESIGN AND METHODS: Using denaturing high performance liquid chromatography, we screened for mutations in CBL, CBLB and CBLC in a group of 172 V617FJAK2-negative and 232 V617FJAK2-positive patients with myeloproliferative neoplasms not selected for loss of heterozygosity. The effect on cell proliferation of the mutations detected was analyzed on a 32D(FLT3) cell model. RESULTS: An initial screening of all coding exons of CBL, CBLB and CBLC in 44 V617FJAK2-negative samples revealed two new CBL mutations (p.C416W in the RING finger domain and p.A678V in the proline-rich domain). Analyses performed on 128 additional V617FJAK2-negative and 232 V617FJAK2-positive samples detected three CBL changes (p.T402HfsX29, p.P417R and p.S675C in two cases) in four V617FJAK2-positive patients. None of these mutations was found in 200 control samples. Cell proliferation assays showed that all of the mutations promoted hypersensitivity to interleukin-3 in 32D(FLT3) cells. CONCLUSIONS: Although mutations described to date have been found in the RING finger domain and in the linker region of CBL, we found a similar frequency of mutations in the proline-rich domain. In addition, we found CBL mutations in both V617FJAK2-positive (4/232; 1.7%) and negative (2/172; 1.2%) patients and all of them promoted hypersensitivity to interleukin-3.


Assuntos
Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Proteínas Proto-Oncogênicas c-cbl/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sequência Conservada , Éxons , Proteínas de Fusão bcr-abl/deficiência , Proteínas de Fusão bcr-abl/genética , Expressão Gênica , Ordem dos Genes , Humanos , Interleucina-3/farmacologia , Janus Quinase 2/metabolismo , Camundongos , Dados de Sequência Molecular , Transtornos Mieloproliferativos/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo
8.
Clin Cancer Res ; 18(4): 969-80, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22223527

RESUMO

PURPOSE: We investigated the role of the collagen-binding receptor discoidin domain receptor-1 (DDR1) in the initiation and development of bone metastasis. EXPERIMENTAL DESIGN: We conducted immunohistochemical analyses in a cohort of 83 lung cancer specimens and examined phosphorylation status in a panel of human lung cancer cell lines. Adhesion, chemotaxis, invasiveness, metalloproteolytic, osteoclastogenic, and apoptotic assays were conducted in DDR1-silenced cells. In vivo, metastatic osseous homing and colonization were assessed in a murine model of metastasis. RESULTS: DDR1 was expressed in a panel of human lung cancer cell lines, and high DDR1 levels in human lung tumors were associated with poor survival. Knockdown (shDDR1) cells displayed unaltered growth kinetics in vitro and in vivo. In contrast, shDDR1 cells showed reduced invasiveness in collagen matrices and increased apoptosis in basal conditions and induced apoptosis in vitro. More importantly, conditioned media of DDR1-knockdown cells decreased osteoclastogenic activity in vitro. Consequently, in a model of tumor metastasis to bone, lack of DDR1 showed decreased metastatic activity associated with reduced tumor burden and osteolytic lesions. These effects were consistent with a substantial reduction in the number of cells reaching the bone compartment. Moreover, intratibial injection of shDDR1 cells significantly decreased bone tumor burden, suggesting impaired colonization ability that was highly dependent on the bone microenvironment. CONCLUSIONS: Disruption of DDR1 hampers tumor cell survival, leading to impaired early tumor-bone engagement during skeletal homing. Furthermore, inhibition of DDR1 crucially alters bone colonization. We suggest that DDR1 represents a novel therapeutic target involved in bone metastasis.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Receptores Proteína Tirosina Quinases/genética , Animais , Apoptose/genética , Neoplasias Ósseas/mortalidade , Reabsorção Óssea/genética , Adesão Celular/genética , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular , Receptor com Domínio Discoidina 1 , Feminino , Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Osteoclastos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
9.
Cancer Biomark ; 10(1): 35-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22297550

RESUMO

BACKGROUND: The cortactin (CTTN) gene has been found, by transcriptomic profiling, to be overexpressed in pediatric osteosarcoma. The location of CTTN at 11q13 and the role of cortactin in cytoskeleton restructuring make CTTN of interest as a potential biomarker for osteosarcoma. MATERIALS AND METHODS: Osteoblasts were isolated from 20 high-grade osteosarcomas before chemotherapy, and paired with cell samples from normal tissue, prior to RNA expression analysis on HG-U133A chips (Affymetrix). Semiquantitative CTTN mRNA expression was analyzed by real-time PCR. An osteosarcoma tissue microarray (TMA) containing 233 tissue spots from 48 patients was used for an immunohistochemical (IHC) study of cortactin. RESULTS: Transcriptomic profiling and real-time PCR analysis indicated increased CTTN expression in osteosarcomas (p = 0.001, Student's T test). TMA IHC showed cortactin to be present more frequently and in greater abundance in osteosarcomas than non-tumoral osteoblastic samples (p< 0.006, Mann-Withney test). Analysis of clinical outcomes indicated that overall survival for patients with primary tumors positive for cortactin was significantly lower than that for patients with cortactin negative (or only weakly staining) tumors (p = 0.0278, Log-rank test). CONCLUSIONS: Our preliminary data support the hypothesis that over-expression of cortactin, contained in the 11q13 amplicon, is involved in osteosarcoma carcinogenesis. The potential of cortactin overexpression as a biomarker for osteosarcoma is consolidated.


Assuntos
Neoplasias Ósseas/genética , Cortactina/genética , Expressão Gênica , Osteossarcoma/genética , Regulação para Cima , Adolescente , Adulto , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/patologia , Criança , Cortactina/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Estadiamento de Neoplasias , Osteossarcoma/mortalidade , Osteossarcoma/patologia , Prognóstico , Análise Serial de Tecidos , Células Tumorais Cultivadas , Adulto Jovem
10.
Leuk Lymphoma ; 51(9): 1720-6, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20615084

RESUMO

Hematological malignancies with eosinophilia are often associated with fusions in PDGFRA, PDGFRB, or FGFR1 genes. RT-PCR has proved to be useful for finding new PDGFRA gene fusions, but some studies have shown overexpression of the TK domain which cannot be explained by the existence of such aberrations. This fact could be related to the expression of alternative PDGFRA transcripts. We show that quantification of the expression of three different PDGFRA fragments discriminates between PDGFRA alternative transcripts and fusion genes, and we have tested this novel methodological approach in a group of eosinophilia cases. Our data show that alternative PDGFRA transcripts should be taken into account when screening for PDGFRA aberrations, such as gene fusions, by RT-PCR. Expression from an internal PDGFRA promoter seems to be a frequent event, in both normal and leukemic samples, and is probably related to physiological conditions, but it could have a role in other tumors. Even so, we show that our RQ-PCR methodology can discriminate expression of alternative transcripts from the presence of X-PDGFRA fusion genes.


Assuntos
Processamento Alternativo/genética , Eosinofilia/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/genética , Proteínas de Fusão Oncogênica/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Eosinofilia/etiologia , Eosinofilia/patologia , Feminino , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/patologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Cancer Genet Cytogenet ; 199(1): 1-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20417861

RESUMO

BCR/ABL1-negative chronic myeloproliferative neoplasms (CMPNs) are a heterogeneous group of clonal hematological malignancies. Over recent years, some genetic events in tyrosine kinase (TK) genes have been described as causal events of these diseases. To identify new genetic aberrations underlying these diseases, we used denaturing high performance liquid chromatography and fluorescence in situ hybridization (FISH) to analyze 17 genes from two receptor-TK families (III and IV) and from three cytoplasmic-TK families (Syk, Abl, and Jak) on samples from 44 BCR/ABL1-negative and JAK2(V617F)-negative CMPN patients with different clinical phenotypes. Although screening by FISH did not reveal novel chromosomal aberrations, several sequence changes were detected. None of them were frequent events, but we identified a new potential activating mutation in the FERM domain of JAK2(R340Q). None of the germline JAK2(V617F) single-nucleotide polymorphisms detected differed in distribution between patients and control subjects. In summary, data presented here show that these genes are not frequently mutated or rearranged in CMPNs, suggesting that molecular events causing these disorders must be located in other genes.


Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Janus Quinase 2/química , Janus Quinase 2/genética , Mutação/genética , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética , Oncogenes/genética , Sequência de Aminoácidos , Sequência de Bases , Estudos de Casos e Controles , Doença Crônica , Éxons/genética , Feminino , Predisposição Genética para Doença , Testes Genéticos , Humanos , Hibridização in Situ Fluorescente , Masculino , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA