RESUMO
The detection and quantification of polar pesticides in liquid chromatography coupled with mass spectrometry present significant analytical challenges. This study compares the performance of three LC columns (Hypercarb™, Raptor Polar X™, and Anionic Polar Pesticide™) in separating and quantifying eleven polar pesticides in chicken eggs using a score-based methodology. Analytes include glyphosate, its metabolites, and other high-polarity pesticides like Ethephon, Glufosinate, and Fosetyl aluminum, included in the EU's official control plan. Polar pesticides, characterized by high polarity and hydrophilicity, lead to analytical issues such as poor retention and unconventional peak shapes with traditional reversed-phase methods. Their weak interaction with hydrophobic stationary phases complicates separation, necessitating specific stationary phases to enhance retention and selectivity. This study evaluates these columns' efficacy in complex matrices like chicken eggs and other food samples. Chromatographic separation was performed using a UPLC system coupled with a Q-TOF mass spectrometer; extraction and purification involved freeze-out, centrifugation, and filtration steps. The study highlights the critical role of column selection in achieving accurate and reliable separation and quantification of highly polar analytes in matrices of animal origin, offering in the meantime an easy-to-apply methodology of selection for the right determination of the best chromatographic column for different purposes.
RESUMO
Mycotoxin contamination of feed and feed materials represent a serious health hazard. This study details the occurrence of aflatoxin B1 (AFB1), zearalenone (ZEN) and ochratoxin A (OTA) in 826 feed and 617 feed material samples, collected in two Italian Regions (Umbria and Marche) from 2018 to 2022 analyzed using a UPLC-FLD platform. The developed method was validated and accredited (ISO/IEC 17025) with satisfactory accuracy and precision data obtained in repeatability and intralaboratory reproducibility conditions. Feed had a higher incidence of contaminated samples (26%) with respect to feed materials (6%). AFB1 was found up to 0.1045 mg/kg in cattle feeds and 0.1234 mg/kg in maize; ZEN was detected up to 6.420 mg/kg in sheep feed while OTA was rarely reported and in lower concentrations (up to 0.085 mg/kg). Co-contamination of at least two mycotoxins was reported in 0.8% of the analyzed samples. The incidence of above maximum content/guidance level samples was 2% for feed and feed materials while almost 3-fold-higher for maize (5.8%) suggesting how mycotoxin contamination can affect some matrices more than others. Obtained data can be useful to improve official monitoring plans and therefore further raise awareness of this issue between agriculture stakeholders, healthcare entities and non-professionals.
RESUMO
Poultry is the most likely source of livestock-associated Extended Spectrum Beta-Lactamase (ESBL) and plasmid-mediated AmpC (pAmpC)-producing E. coli (EC) for humans. We tested the hypothesis that farming methods have an impact on the load of ESBL/pAmpC-EC in the gut of broilers at slaughter. Isolates (n = 156) of antibiotic-free (AF), organic (O), and conventional (C) animals were characterized for antibiotic susceptibility and antibiotic resistance genes. Thirteen isolates were whole-genome sequenced. The average loads of ESBL/pAmpC-EC in cecal contents were 4.17 Log CFU/g for AF; 2.85 Log CFU/g for O; and 3.88 Log CFU/g for C type (p < 0.001). ESBL/pAmpC-EC isolates showed resistance to antibiotic classes historically used in poultry, including penicillins, tetracyclines, quinolones, and sulfonamides. Isolates from O and AF farms harbored a lower proportion of resistance to antibiotics than isolates from C farms. Among the determinants for ESBL/pAmpC, CTX-M-1 prevailed (42.7%), followed by TEM-type (29%) and SHV (19.8%). Avian pathogenic E. coli (APEC), belonging to ST117 and ST349, were identified in the collection. These data confirm the possible role of a broiler as an ESBL/AmpC EC and APEC reservoir for humans. Overall, our study suggests that antibiotic-free and organic production may contribute to a reduced exposure to ESBL/AmpC EC for the consumer.
RESUMO
The transmission of antimicrobial resistance bacteria from animals to humans has become an important concern. The extended-spectrum beta-lactamase (ESBL) -AmpC- producing Escherichia coli (ESBL-AmpC EC) and quinolones resistant E. coli are of particular interest. The present study aimed to evaluate the load and prevalence of antibiotic-resistant commensal E. coli along the goose production cycle on 2 free-range farms in central Italy. On A farm, oxytetracycline was administered, while the B farm did not use antibiotics during the geese productive cycle. One hundred geese of 1-day-old from the same batch were divided into the two farms. At hatching, the animals showed an average of E. coli loads was 6.83 ± 0.48 log CFU/g, and 0.28 ± 0.28, 0, 5.12 ± 0.54 log CFU/g for E. coli resistant to nalidixic acid (E. colinal), to cefotaxime (E. colicef) and to tetracyclines (E. colitet), respectively. The loads of E. coli, E. colinal, E. colicef and E. colitet on 224 environmental faecal pools were determined at 8 time points. Antimicrobial susceptibility and molecular characterization of E. colicef isolates were performed. The ANOVA was used to assess the difference in bacterial loads between the two farms. We described more than 50% of resistances for tetracyclines in both farms, and sulphonamides and cephazolin in the A farm. The loads of E. coli and E. colinal in faeces were estimated at approximately 6-7 log (CFU/g) and 5-6 log (CFU/g) in the two farms, respectively. The average load of extended-spectrum beta-lactamase Escherichia coli (ESBL EC) in goose faeces varied broadly along the production cycle: in the first weeks, a sharp increase was observed in both farms, while later on A farm, the burden of ESBL EC remained steady until the end of the production cycle and on B farm the load dramatically decreased from 6 wk of age onward. An increase in the proportion of E. colinal was observed on A farm shortly after the antibiotic administration. Our study shows that the dynamics of antibiotic-resistant E. coli in farmed geese are similar to the ones observed in broilers. However, the risk of the emergence of antibiotic-resistant commensal E. coli, might be mitigated by the adoption of good management practices, including prudent use of antibiotics.
Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Galinhas , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Gansos , Itália , Estudos Longitudinais , beta-LactamasesRESUMO
The emergence of Clostridioides difficile as the main agent of antibiotic-associated diarrhoea has raised concerns about its potential zoonotic role in different animal species. The use of antimicrobials is a major risk factor for C. difficile infection. Here, we provide data on C. difficile infection in dairy and beef calves in Umbria, a region in central Italy. This cross-sectional study focuses on prevalence, risk factors, ribotypes, toxinotypes and antimicrobial resistance profiles of circulating ribotypes. A prevalence of 19.8% (CI95%, 12-27.6%) positive farms was estimated, and the prescription of penicillins on the farms was associated with C. difficile detection (OR = 5.58). Eleven different ribotypes were found, including the ST11 sublineages RT-126 and -078, which are also commonly reported in humans. Thirteen isolates out of 17 showed resistance to at least one of clindamycin, moxifloxacin, linezolid and vancomycin. Among them, multiple-drug resistance was observed in two isolates, belonging to RT-126. Furthermore, RT-126 isolates were positive for tetracycline resistance determinants, confirming that tetracycline resistance is widespread among ST11 isolates from cattle. The administration of penicillins increased the risk of C. difficile in calves: this, together with the recovery of multi-resistant strains, strongly suggests the need for minimising antibiotic misuse on cattle farms.
RESUMO
Enterotoxigenic Escherichia coli (ETEC) is the aetiological agent of postweaning diarrhoea (PWD) in piglets. The SNPs located on the Mucine 4 (MUC4) and Fucosyltransferase 1 (FUT1) genes have been associated with the susceptibility to ETEC F4 and ETEC F18, respectively. The interplay between the MUC4 and FUT1 genotypes to ETEC infection and the use of amoxicillin in modifying the intestinal microbiota during a natural infection by multiresistant ETEC strains have never been investigated. The aim of this study was to evaluate the effects of the MUC4 and FUT1 genotypes and the administration of amoxicillin through different routes on the presence of diarrhoea and the faecal microbiota composition in piglets naturally infected with ETEC. Seventy-one piglets were divided into three groups: two groups differing by amoxicillin administration routes-parenteral (P) or oral (O) and a control group without antibiotics (C). Faecal scores, body weight, presence of ETEC F4 and F18 were investigated 4 days after the arrival in the facility (T0), at the end of the amoxicillin administration (T1) and after the withdrawal period (T2). The faecal bacteria composition was assessed by sequencing the 16S rRNA gene. We described that MUC4 and FUT1 genotypes were associated with the presence of ETEC F4 and ETEC F18. The faecal microbiota was influenced by the MUC4 genotypes at T0. We found the oral administration to be associated with the presence of diarrhoea at T1 and T2. Furthermore, the exposure to amoxicillin resulted in significant alterations of the faecal microbiota. Overall, MUC4 and FUT1 were confirmed as genetic markers for the susceptibility to ETEC infections in pigs. Moreover, our data highlight that group amoxicillin treatment may produce adverse outcomes on pig health in course of multiresistant ETEC infection. Therefore, alternative control measures able to maintain a healthy faecal microbiota in weaners are recommended.
Assuntos
Amoxicilina/farmacologia , Diarreia/genética , Infecções por Escherichia coli/complicações , Fezes/microbiologia , Genótipo , Microbiota , Suínos/microbiologia , Amoxicilina/administração & dosagem , Amoxicilina/uso terapêutico , Animais , DNA Bacteriano/genética , Diarreia/complicações , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Escherichia coli Enterotoxigênica/fisiologia , Polimorfismo de Nucleotídeo Único , Suínos/genética , DesmameRESUMO
Poultry production is the fastest growing meat sector worldwide. In the last five years, growing concerns have been expressed by international health agencies and consumers about the transmission of antibiotic-resistant bacteria from poultry meat to human. Consequently, poultry producers have adopted alternative production systems based on reduced antibiotic usage, including organic and antibiotic-free (AF) production. However, the effect of these production systems on the antibiotic resistance of the gut flora in slaughtered poultry has been poorly investigated. We hypothesized that organic and AF production systems reduce the risk of antibiotic resistance in the commensal Escherichia coli of broilers at slaughter compared with conventional production. Cecal content from broilers raised in conventional (292), AF (291), or organic (272) flocks (855 broilers in total) belonging to the same company was sampled. E. coli loads [colony-formingâ¯unitsâ¯(CFU/g)] and numbers of E. coli resistant to nalidixic acid (E. colinal) were determined for each sample. Antibiotic susceptibility of one isolate per sample was evaluated using the disc diffusion method; colistin resistance was determined by using the broth microdilution method. The differences in bacterial loads from the three production types were evaluated using one-way ANOVA. Differences in the proportion of resistant isolates in the three production lines were evaluated using Pearson's χ2 or Fisher's test. The strength of the association was evaluated by using odds ratio (OR), with the conventional production type as a reference (ORâ¯=â¯1). Overall, the analysis revealed a high level of resistance (50% or higher) to ampicillin, cefazolin, sulfonamides, nalidixic acid, and tetracycline, independently of the production type. High proportion of ciprofloxacin resistance (52%) was observed, with 4.5% isolates resistant to cefotaxime and 1.8% resistant to colistin. The average loads (logâ¯CFU/g cecal content) of E. colinal were determined as 6.84 for AF, 6.38 for organic type, and 7.27 for conventional type. The difference was significant (pâ¯<â¯0.00001). Interestingly, broilers from AF flocks had higher E. colinal loads than broilers from organic flocks. This trend (conventionalâ¯>â¯AFâ¯>â¯organic) was confirmed by qualitative data. However, the magnitude of the effect, measured as a reduced risk of resistance, varied broadly for the antibiotics tested. These findings suggest that poultry production systems alternative to the conventional broiler production are associated with reduced frequency of antibiotic-resistant E. coli among the commensal gut flora, posing a lower risk to the environment and the consumer.
Assuntos
Agricultura/métodos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Aves Domésticas/microbiologia , Animais , Antibacterianos/administração & dosagem , Ceco/microbiologia , Galinhas/microbiologia , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade MicrobianaAssuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Infecções por Escherichia coli/veterinária , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Doenças dos Suínos/microbiologia , Animais , Escherichia coli Enterotoxigênica/classificação , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Transferência Genética Horizontal , Genes Bacterianos , Genótipo , Sequências Repetitivas Dispersas , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/análise , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Suínos , Fatores de Virulência/genéticaRESUMO
A novel mcr colistin resistance gene was identified in a strain of Salmonella enterica, monophasic variant of serovar Typhimurium (4,5,12:i:-â¯), isolated from a pig at slaughter in Italy in 2013, and in Escherichia coli strains collected during routine diagnostic of post-weaning diarrhoea in pigs from Spain and Belgium in 2015 and 2016. Immediate implementation of mcr-screening including this novel gene variant is required for Salmonella and E. coli from humans and food-producing animals in Europe.