Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 786: 147431, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33964783

RESUMO

In this study we first measured the mineralization of pyrene on leaves of urban holm oak (Quercus ilex) by autochthonous microorganisms and an inoculated PAH degrading bacterium (i.e., Mycobacterium gilvum), selected as a model phyllosphere species, as well as the leaf-water (KLW) and leaf-air (KLA) partition coefficients for this chemical. Mineralization was investigated in two different experimental systems in terms of leaf and microorganism environment. Additionally, the influence on pyrene partitioning and mineralization when particulate matter (PM) was present on the leaf surface or removed was studied. Mineralization of 14C-labeled pyrene by autochthonous microorganisms was lower than 1% after approximately two weeks, while M. gilvum mineralized 5% to 17% of pyrene. These extents corresponded to mineralization half-lives that ranged between ~30 to ~200 days. We proposed that PM present at the leaf surface reduced the accumulation of pyrene by inner compartments (cuticle) distantly located from microbial cells and enhanced the bioaccessibility of pyrene, speeding up microbial activity and therefore mineralization. These results highlight that plant-phyllosphere microorganism interaction is more complex than currently established and deserves additional studies to further comprehend the air purification ecosystem service of phyllosphere microorganisms.


Assuntos
Quercus , Ecossistema , Material Particulado , Folhas de Planta , Pirenos
2.
Sci Total Environ ; 739: 139893, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535463

RESUMO

Urban trees provide important ecosystem services, including air quality improvement. Polycyclic aromatic hydrocarbons (PAHs) are among the most important pollutants in air, due to their elevated concentrations and toxicity. Plants can act as filters of PAHs and as "chemical reactors" for pollutant removal, therefore reducing air concentrations. Here, the first assessment of photo- vs. biodegradation of PAHs on leaves of urban trees is presented. A dynamic air-vegetation-soil model (SoilPlusVeg) was improved to simulate the fate of two representative PAHs with contrasting physico-chemical properties (phenanthrene and benzo[a]pyrene). Simulations were performed for two different environmental scenarios from Italy (Como and Naples), selected for their dissimilar meteorological parameters, plant species and emission levels. The effect of photo- and biodegradation on leaf concentrations and fluxes towards air and soil was investigated comparing deciduous (maple, cornel and hazelnut) and evergreen (holm oak) broadleaf woods. The results showed that biodegradation in the phyllosphere could not be neglected when evaluating the ecosystem services provided by urban trees, as this process contributed significantly to the reductions (up to 25% on average) in PAH leaf concentrations and fluxes to air and soil; however, the reductions revealed ample variations with time (up to more than two orders of magnitude) showing the dependence on meteorological parameters, air compartment structure, as well as type of woods. These findings permitted to improve the ecological realism of the simulations and obtain more accurate results when predicting organic contaminant uptake and release by plant leaves, including potential for food chain transfer and long-range transport.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos/análise , Ecossistema , Monitoramento Ambiental , Itália , Folhas de Planta/química , Árvores
3.
Environ Sci Technol ; 49(17): 10255-64, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26230485

RESUMO

The bioavailability of organic chemicals in soil and sediment is an important area of scientific investigation for environmental scientists, although this area of study remains only partially recognized by regulators and industries working in the environmental sector. Regulators have recently started to consider bioavailability within retrospective risk assessment frameworks for organic chemicals; by doing so, realistic decision-making with regard to polluted environments can be achieved, rather than relying on the traditional approach of using total-extractable concentrations. However, implementation remains difficult because scientific developments on bioavailability are not always translated into ready-to-use approaches for regulators. Similarly, bioavailability remains largely unexplored within prospective regulatory frameworks that address the approval and regulation of organic chemicals. This article discusses bioavailability concepts and methods, as well as possible pathways for the implementation of bioavailability into risk assessment and regulation; in addition, this article offers a simple, pragmatic and justifiable approach for use within retrospective and prospective risk assessment.


Assuntos
Compostos Orgânicos/química , Disponibilidade Biológica , Medição de Risco , Solo/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA