Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Neurol Genet ; 10(5): e200192, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39372123

RESUMO

Although X-linked adrenoleukodystrophy (ALD) has historically been considered a childhood disease managed by pediatric neurologists, it is one of the most common leukodystrophies diagnosed in adulthood. An increase in both male and female adults reaching diagnosis due to familial cases identified by state newborn screening panels and more widespread use of genetic testing results in a large cohort of presymptomatic or early symptomatic adults. This population is in urgent need of standardized assessments and follow-up care. Adults with ALD/adrenomyeloneuropathy (AMN) may be diagnosed in a variety of ways, including after another family member is identified via genetic testing or newborn screening, presenting for symptomatic evaluation, or following diagnosis with primary adrenal insufficiency. Significant provider, patient, and systems-based barriers prevent adult patients with ALD/AMN from receiving appropriate care, including lack of awareness of the importance of longitudinal neurologic management. Confirmation of and education about the diagnosis should be coordinated in conjunction with a genetic counselor. Routine surveillance for adrenal insufficiency and onset of cerebral ALD (CALD) in men should be performed systematically to avoid preventable morbidity and mortality. While women with ALD do not usually develop cerebral demyelination or adrenal insufficiency, they remain at risk for myeloneuropathy and are no longer considered "carriers." After diagnosis, patients should be connected to the robust support networks, foundations, and research organizations available for ALD/AMN. Core principles of neurologic symptom management parallel those for patients with other etiologies of progressive spastic paraplegia. Appropriate patient candidates for hematopoietic stem cell transplant (HSCT) and other investigational disease-modifying strategies require early identification to achieve optimal outcomes. All patients with ALD/AMN, regardless of sex, age, or symptom severity, benefit from a multidisciplinary approach to longitudinal care spearheaded by the neurologist. This review proposes key strategies for diagnostic confirmation, laboratory and imaging surveillance, approach to symptom management, and guidance for identification of appropriate candidates for HSCT and investigational treatments.

3.
Neurology ; 103(7): e209830, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39236268

RESUMO

Careful evaluation of symptom progression and radiographic findings are essential tools when approaching cases of suspected chronic myelopathies. In this case, a 26-year-old woman presented with progressive ambulatory and bladder dysfunction for 4 years. Her examination was marked by bilateral lower-extremity upper motor neuron signs and distal large-fiber sensory loss. Neurologic workup for acquired causes of this presentation was unrevealing. MRI of the brain revealed a characteristic radiologic finding. Guided genetic testing ultimately yielded the final diagnosis. In this clinical vignette, we review the approach to chronic myelopathy including consideration of genetic etiologies and pursuit of targeted gene testing. We further discuss the typical clinical and radiographic findings of a rare diagnosis.


Assuntos
Transtornos Neurológicos da Marcha , Humanos , Feminino , Adulto , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Raciocínio Clínico , Doenças da Medula Espinal/diagnóstico por imagem , Progressão da Doença , Imageamento por Ressonância Magnética
4.
Handb Clin Neurol ; 204: 21-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39322380

RESUMO

Leukodystrophies are heritable disorders with white matter abnormalities observed on central nervous system magnetic resonance imaging. Pediatric leukodystrophies have long been known for their classically high, "unsolved" rate. Indeed, these disorders provide a diagnostic dilemma for many clinicians as over 100 genetic disorders alone may present with white matter abnormalities, with this figure not taking into account the substantial number of infectious agents, toxicities, and acquired disorders that may affect the white matter of the brain. Achieving a diagnosis may be the single most important step in the clinical course of a leukodystrophy-affected individual, with important implications for care and quality of life. For certain disorders, prompt recognition can direct therapeutic intervention with significant implications and requires urgent recognition. In this review, we cover newborn screening efforts, standard-of-care testing methodologies, and next generation sequencing approaches that continue to change the landscape of leukodystrophy diagnosis. Early studies have shown that next generation sequencing approaches, particularly exome and now genome sequencing have proven to be powerful in helping resolve many cases that were refractory to a single gene or linkage analysis approach. In addition, other methods are required for cases that remain persistently unsolved after next generation sequencing methods have been used. In the past more than half of affected individuals never achieved an etiologic diagnosis, and when they did, the reported times to diagnosis were >5 years although molecular testing has allowed this to be reduced to closer to 16 months. For affected families, next generation sequencing technologies have finally provided a way to fill gaps in diagnosis.


Assuntos
Leucoencefalopatias , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/diagnóstico por imagem , Triagem Neonatal/métodos , Recém-Nascido , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-39134377

RESUMO

Inherited white matter disorders (IWMDs) are a phenotypically and genotypically heterogeneous group of disorders affecting the central nervous system (CNS) with or without peripheral neuropathy. They are classified either as leukodystrophies (LDs), with primary glial abnormalities, or genetic leukoencephalopathies (gLEs), where other CNS cells are involved. As a group, these disorders are common, with an incidence of 1 in 7500 births. However, IWMDs often go undiagnosed or suffer delayed or misdiagnosis due to their heterogeneous presentation. Many of these disorders present with lethal secondary manifestations that can be prevented through early disease recognition, periodic surveillance, and preventative management. Emerging therapeutics, including gene therapy trials for metachromatic leukodystrophy (MLD) and adrenoleukodystrophy (ALD), suggest disease progression may be slowed or even prevented if treated early. Therapies for IWMDs that target glial cells or the peripheral immune system may provide novel insights for treating acquired disorders of white matter.

6.
Cytotherapy ; 26(7): 739-748, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38613540

RESUMO

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.


Assuntos
Leucodistrofia Metacromática , Humanos , Recém-Nascido , Cerebrosídeo Sulfatase/genética , Consenso , Terapia Genética/métodos , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Triagem Neonatal/métodos , Estados Unidos
7.
Neurology ; 102(6): e209161, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38447117

RESUMO

BACKGROUND AND OBJECTIVES: Genetic testing is now the standard of care for many neurologic conditions. Health care disparities are unfortunately widespread in the US health care system, but disparities in the utilization of genetic testing for neurologic conditions have not been studied. We tested the hypothesis that access to and results of genetic testing vary according to race, ethnicity, sex, socioeconomic status, and insurance status for adults with neurologic conditions. METHODS: We analyzed retrospective data from patients who underwent genetic evaluation and testing through our institution's neurogenetics program. We tested for differences between demographic groups in 3 steps of a genetic evaluation pathway: (1) attending a neurogenetic evaluation, (2) completing genetic testing, and (3) receiving a diagnostic result. We compared patients on this genetic evaluation pathway with the population of all neurology outpatients at our institution, using univariate and multivariable logistic regression analyses. RESULTS: Between 2015 and 2022, a total of 128,440 patients were seen in our outpatient neurology clinics and 2,540 patients underwent genetic evaluation. Black patients were less than half as likely as White patients to be evaluated (odds ratio [OR] 0.49, p < 0.001), and this disparity was similar after controlling for other demographic factors in multivariable analysis. Patients from the least wealthy quartile of zip codes were also less likely to be evaluated (OR 0.67, p < 0.001). Among patients who underwent evaluation, there were no disparities in the likelihood of completing genetic testing, nor in the likelihood of a diagnostic result after adjusting for age. Analyses restricted to specific indications for genetic testing supported these findings. DISCUSSION: We observed unequal utilization of our clinical neurogenetics program for patients from marginalized and minoritized demographic groups, especially Black patients. Among patients who do undergo evaluation, all groups benefit similarly from genetic testing when it is indicated. Understanding and removing barriers to accessing genetic testing will be essential to health care equity and optimal care for all patients with neurologic disorders.


Assuntos
Doenças do Sistema Nervoso , Neurologia , Adulto , Humanos , Estudos Retrospectivos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Instituições de Assistência Ambulatorial , Testes Genéticos
8.
J Neurol ; 271(2): 733-747, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37891417

RESUMO

The role of genetic testing in neurologic clinical practice has increased dramatically in recent years, driven by research on genetic causes of neurologic disease and increased availability of genetic sequencing technology. Genetic testing is now indicated for adults with a wide range of common neurologic conditions. The potential clinical impacts of a genetic diagnosis are also rapidly expanding, with a growing list of gene-specific treatments and clinical trials, in addition to important implications for prognosis, surveillance, family planning, and diagnostic closure. The goals of this review are to provide practical guidance for clinicians about the role of genetics in their practice and to provide the neuroscience research community with a broad survey of current progress in this field. We aim to answer three questions for the neurologist in practice: Which of my patients need genetic testing? What testing should I order? And how will genetic testing help my patient? We focus on common neurologic disorders and presentations to the neurology clinic. For each condition, we review the most current guidelines and evidence regarding indications for genetic testing, expected diagnostic yield, and recommended testing approach. We also focus on clinical impacts of genetic diagnoses, highlighting a number of gene-specific therapies recently approved for clinical use, and a rapidly expanding landscape of gene-specific clinical trials, many using novel nucleotide-based therapeutic modalities like antisense oligonucleotides and gene transfer. We anticipate that more widespread use of genetic testing will help advance therapeutic development and improve the care, and outcomes, of patients with neurologic conditions.


Assuntos
Doenças do Sistema Nervoso , Neurociências , Adulto , Humanos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/terapia , Testes Genéticos , Neurologistas , Instituições de Assistência Ambulatorial
9.
Mol Genet Metab ; 138(3): 107525, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796138

RESUMO

Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.


Assuntos
Doença de Depósito de Glicogênio Tipo IV , Doença de Depósito de Glicogênio , Doenças Neurodegenerativas , Pré-Escolar , Humanos , Doença de Depósito de Glicogênio Tipo IV/diagnóstico , Doença de Depósito de Glicogênio Tipo IV/genética , Doença de Depósito de Glicogênio Tipo IV/terapia , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/terapia , Glicogênio
10.
ASN Neuro ; 14: 17590914221097510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35635130

RESUMO

The idea that myelination is driven by both intrinsic and extrinsic cues has gained much traction in recent years. Studies have demonstrated that myelination occurs in an intrinsic manner during early development and continues through adulthood in an activity-dependent manner called adaptive myelination. Motor learning, the gradual acquisition of a specific novel motor skill, promotes adaptive myelination in both the healthy and demyelinated central nervous system (CNS). On the other hand, exercise, a physical activity that involves planned, structured and repetitive bodily movements that expend energy and benefits one's fitness, promotes remyelination in pathology, but it is less clear whether it promotes adaptive myelination in healthy subjects. Studies on these topics have also investigated whether the timing of motor learning or physical exercise is important for successful addition of myelin. Here we review our current understanding of the relationship of motor skill learning and physical exercise on myelination.


Assuntos
Exercício Físico , Remielinização , Sistema Nervoso Central , Exercício Físico/fisiologia , Humanos , Aprendizagem/fisiologia , Bainha de Mielina
11.
Am J Med Genet A ; 185(10): 2922-2928, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34075706

RESUMO

While genetics evaluation is increasingly utilized in adult neurology patients, its usage and efficacy are not well characterized. Here, we report our experience with 1461 consecutive patients evaluated in an adult neurogenetics clinic at a large academic medical center between January 2015 and March 2020. Of the 1461 patients evaluated, 1215 patients were referred for the purposes of identifying a genetic diagnosis for an undiagnosed condition, 90.5% of whom underwent genetic testing. The modalities of genetic testing utilized varied across referral diagnostic categories, including a range of utilization of whole exome sequencing (WES) as an initial test in 13.9% of neuromuscular patients to 52.9% in white matter disorder patients. The usage of WES increased over time, from 7.7% of initial testing in 2015 to a peak of 27.3% in 2019. Overall, genetic testing yielded a causal genetic diagnosis in 30.7% of patients. This yield was higher in certain referring diagnosis categories, such as neuromuscular (39.0%) and epilepsy (29.8%). Our study demonstrates that evaluation at an adult neurogenetics referral center can yield diagnoses in a substantial fraction of patients. Additional research will be needed to determine optimal genetic testing strategies and cost effectiveness of adult neurogenetics evaluation.


Assuntos
Testes Genéticos/tendências , Doenças do Sistema Nervoso/diagnóstico , Adulto , Análise Custo-Benefício , Testes Diagnósticos de Rotina/tendências , Exoma/genética , Feminino , Humanos , Masculino , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Sequenciamento do Exoma
12.
Front Neurol ; 12: 788168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185751

RESUMO

A comprehensive review of published literature was conducted to elucidate the genetics, neuropathology, imaging findings, prevalence, clinical course, diagnosis/clinical evaluation, potential biomarkers, and current and proposed treatments for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a rare, debilitating, and life-threatening neurodegenerative disorder for which disease-modifying therapies are not currently available. Details on potential efficacy endpoints for future interventional clinical trials in patients with ALSP and data related to the burden of the disease on patients and caregivers were also reviewed. The information in this position paper lays a foundation to establish an effective clinical rationale and address the clinical gaps for creation of a robust strategy to develop therapeutic agents for ALSP, as well as design future clinical trials, that have clinically meaningful and convergent endpoints.

13.
Elife ; 92020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32459173

RESUMO

Destruction of oligodendrocytes and myelin sheaths in cortical gray matter profoundly alters neural activity and is associated with cognitive disability in multiple sclerosis (MS). Myelin can be restored by regenerating oligodendrocytes from resident progenitors; however, it is not known whether regeneration restores the complex myelination patterns in cortical circuits. Here, we performed time lapse in vivo two photon imaging in somatosensory cortex of adult mice to define the kinetics and specificity of myelin regeneration after acute oligodendrocyte ablation. These longitudinal studies revealed that the pattern of myelination in cortex changed dramatically after regeneration, as new oligodendrocytes were formed in different locations and new sheaths were often established along axon segments previously lacking myelin. Despite the dramatic increase in axonal territory available, oligodendrogenesis was persistently impaired in deeper cortical layers that experienced higher gliosis. Repeated reorganization of myelin patterns in MS may alter circuit function and contribute to cognitive decline.


Assuntos
Bainha de Mielina/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Axônios/química , Axônios/metabolismo , Feminino , Humanos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Bainha de Mielina/química , Oligodendroglia/química , Oligodendroglia/metabolismo , Remielinização , Córtex Somatossensorial/química
14.
J Neurogenet ; 33(1): 21-26, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30724636

RESUMO

There is increasing evidence that whole exome sequencing (WES) has a high diagnostic yield and is cost-efficient for individuals with neurological phenotypes. However, there is limited data on the use of WES in non-Western populations, including populations with a high rate of consanguinity. Retrospective chart review was performed on 24 adults with undiagnosed neurological symptoms evaluated in genetics and neurology clinics in a tertiary care facility on the Arabian Peninsula, and had WES between 2014 and 2016. Definitive diagnoses were made in 13/24 (54%) of cases. Of these, 5/13 (38%) revealed novel pathogenic variants. Of the known 19/24 (79%) consanguineous cases, diagnostic rate was slightly higher, 11/19 (58%) as compared to 2/5 (40%) among non-consanguineous cases. Autosomal recessive disorders comprised 10/13 (77%) of molecular diagnoses, all found to be due to homozygous pathogenic variants among consanguineous cases. WES in this cohort of adults with neurological symptoms had a high diagnostic rate likely due to high consanguinity rates in this population, as evidenced by the high diagnostic rate of homozygous pathogenic variants.


Assuntos
Consanguinidade , Sequenciamento do Exoma/métodos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
15.
Nat Neurosci ; 21(5): 696-706, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29556025

RESUMO

Oligodendrocyte generation in the adult CNS provides a means to adapt the properties of circuits to changes in life experience. However, little is known about the dynamics of oligodendrocytes and the extent of myelin remodeling in the mature brain. Using longitudinal in vivo two-photon imaging of oligodendrocytes and their progenitors in the mouse cerebral cortex, we show that myelination is an inefficient and extended process, with half of the final complement of oligodendrocytes generated after 4 months of age. Oligodendrocytes that successfully integrated formed new sheaths on unmyelinated and sparsely myelinated axons, and they were extremely stable, gradually changing the pattern of myelination. Sensory enrichment robustly increased oligodendrocyte integration, but did not change the length of existing sheaths. This experience-dependent enhancement of myelination in the mature cortex may accelerate information transfer in these circuits and strengthen the ability of axons to sustain activity by providing additional metabolic support.


Assuntos
Bainha de Mielina/fisiologia , Neurogênese/fisiologia , Oligodendroglia/fisiologia , Sensação/fisiologia , Córtex Somatossensorial/fisiologia , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Meio Ambiente , Feminino , Masculino , Camundongos , Plasticidade Neuronal/fisiologia , Estimulação Luminosa , Privação Sensorial , Células-Tronco
16.
J Neurogenet ; 32(1): 1-5, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29191078

RESUMO

We report a consanguineous family with three affected siblings with novel mutation in the KCNJ10 gene. All three presented with central nervous system symptoms in the form of infantile focal seizures, ataxia, slurred speech with early developmental delay and intellectual disability in two siblings. None had any associated electrolyte abnormalities and no symptomatic hearing deficits were observed.


Assuntos
Ataxia/genética , Perda Auditiva Neurossensorial/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Convulsões/genética , Adolescente , Idade de Início , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Lactente , Masculino , Linhagem , Irmãos , Adulto Jovem
17.
Glia ; 65(12): 2087-2098, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28940645

RESUMO

The regeneration of oligodendrocytes is a crucial step in recovery from demyelination, as surviving oligodendrocytes exhibit limited structural plasticity and rarely form additional myelin sheaths. New oligodendrocytes arise through the differentiation of platelet-derived growth factor receptor α (PDGFRα) expressing oligodendrocyte progenitor cells (OPCs) that are widely distributed throughout the CNS. Although there has been detailed investigation of the behavior of these progenitors in white matter, recent studies suggest that disease burden in multiple sclerosis (MS) is more strongly correlated with gray matter atrophy. The timing and efficiency of remyelination in gray matter is distinct from white matter, but the dynamics of OPCs that contribute to these differences have not been defined. Here, we used in vivo genetic fate tracing to determine the behavior of OPCs in gray and white matter regions in response to cuprizone-induced demyelination. Our studies indicate that the temporal dynamics of OPC differentiation varies significantly between white and gray matter. While OPCs rapidly repopulate the corpus callosum and mature into CC1 expressing mature oligodendrocytes, OPC differentiation in the cingulate cortex and hippocampus occurs much more slowly, resulting in a delay in remyelination relative to the corpus callosum. The protracted maturation of OPCs in gray matter may contribute to greater axonal pathology and disease burden in MS.


Assuntos
Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Inibidores da Monoaminoxidase/toxicidade , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Fatores Etários , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Remielinização/efeitos dos fármacos , Remielinização/fisiologia
19.
Pediatrics ; 136(4): 732-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26371189

RESUMO

A 6-year-old girl presented with a history of leg pain and cramping that progressively worsened over a 2- to 3-week period of time. Her examination was notable for normal vital signs, limited range of motion of her left hip, and a limp. Inflammatory markers were slightly elevated, but the serum electrolytes, calcium, and magnesium, complete blood cell count and differential, and creatine kinase level were normal. She was hospitalized for further diagnostic evaluation and was noted to have abnormal muscle movements classified as myokymia (continuous involuntary quivering, rippling, or undulating movement of muscles). Electromyography confirmed the myokymia but did not reveal evidence of a myopathy or neuropathy, prompting additional evaluation for a systemic etiology.


Assuntos
Neuroblastoma/diagnóstico , Síndromes Paraneoplásicas do Sistema Nervoso/diagnóstico , Criança , Feminino , Humanos , Perna (Membro) , Cãibra Muscular/etiologia , Mioquimia/etiologia , Neuroblastoma/complicações , Síndromes Paraneoplásicas do Sistema Nervoso/complicações
20.
Rev Neurosci ; 21(5): 397-419, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21280457

RESUMO

Gap junctions (GJs) are channels that allow the diffusion of ions and small molecules across apposed cell membranes. In peripheral nerves, Schwann cells express the GJ proteins connexin32 (Cx32) and Cx29, which have distinct localizations. Cx32 forms GJs through non-compact myelin areas, whereas Cx29 forms hemichannels in the innermost layers of myelin apposing axonal Shaker-type K+ channels. In the CNS, rodent oligodendrocytes express Cx47, Cx32 and Cx29. Cx47 is expressed by all types of oligodendrocytes both in the white and grey matter and forms GJs on cell bodies and proximal processes, as well as most of the intercellular channels with astrocytes. Cx32 is expressed mostly by white matter oligodendrocytes and is localized in the myelin sheath of large diameter fibers. Cx29, and its human ortholog Cx31.3, appear to be restricted to oligodendrocytes that myelinate small caliber fibers, likely forming hemichannels. The importance of intercellular and intracellular GJs in myelinating cells are demonstrated by human disorders resulting from mutations affecting GJ proteins. The X-linked Charcot Marie Tooth disease (CMT1X) is caused by hundreds of mutations affecting Cx32. Patients with CMT1X present mainly with a progressive peripheral neuropathy, which may be accompanied by CNS myelin dysfunction. Mutations in Cx47 may cause a devastating leukodystrophy called Pelizaeus-Merzbacher-like disease or a milder spastic paraplegia. In addition, CNS demyelination may be caused by defects in genes expressing astrocytic GJ proteins, which are essential for oligodendrocytes. Findings from in vitro and in vivo models of these disorders developed over the last decade indicate that most mutations cause loss of function and an inability of the mutant connexins to form functional GJs. Here we review the clinical, genetic, and neurobiological aspects of GJ disorders affecting the PNS and CNS myelinating cells.


Assuntos
Junções Comunicantes/patologia , Bainha de Mielina/metabolismo , Doenças do Sistema Nervoso/patologia , Células de Schwann , Animais , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Mutação/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA