Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Molecules ; 26(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809323

RESUMO

In this work, the effect of different immobilization procedures on the properties of a lipase obtained from the extremophilic microorganism Serratia sp. USBA-GBX-513, which was isolated from Paramo soils of Los Nevados National Natural Park (Colombia), is reported. Different Shepharose beads were used: octyl-(OC), octyl-glyoxyl-(OC-GLX), cyanogen bromide (BrCN)-, and Q-Sepharose. The performance of the different immobilized extremophile lipase from Serratia (ESL) was compared with that of the lipase B from Candida antarctica (CALB). In all immobilization tests, hyperactivation of ESL was observed. The highest hyperactivation (10.3) was obtained by immobilization on the OC support. Subsequently, the thermal stability at pH 5, 7, and 9 and the stability in the presence of 50% (v/v) acetonitrile, 50% dioxane, and 50% tetrahydrofuran solvents at pH 7 and 40 °C were evaluated. ESL immobilized on octyl-Sepharose was the most stable biocatalyst at 90 °C and pH 9, while the most stable preparation at pH 5 was ESL immobilized on OC-GLX-Sepharose supports. Finally, in the presence of 50% (v/v) tetrahydrofuran (THF) or dioxane at 40 °C, ESL immobilized on OC-Sepharose was the most stable biocatalyst, while the immobilized preparation of ESL on Q-Sepharose was the most stable one in 40% (v/v) acetonitrile.


Assuntos
Proteínas de Bactérias/metabolismo , Enzimas Imobilizadas/metabolismo , Extremófilos/enzimologia , Lipase/metabolismo , Serratia/enzimologia , Basidiomycota/enzimologia , Biocatálise , Estabilidade Enzimática , Proteínas Fúngicas/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Sefarose/análogos & derivados , Sefarose/química
3.
Med Chem ; 14(7): 741-752, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29737262

RESUMO

BACKGROUND: Antimicrobial peptides are on the first line of defense against pathogenic microorganisms of many living beings. These compounds are considered natural antibiotics that can overcome bacterial resistance to conventional antibiotics. Due to this characteristic, new peptides with improved properties are quite appealing for designing new strategies for fighting pathogenic bacteria. METHODS: Sixteen designed peptides were synthesized using Fmoc chemistry; five of them are new cationic antimicrobial peptides (CAMPs) designed using a genetic algorithm that optimizes the antibacterial activity based on selected physicochemical descriptors and 11 analog peptides derived from these five peptides were designed and constructed by single amino acid substitutions. These 16 peptides were structurally characterized and their biological activity was determined against Escherichia coli O157:H7 (E. coli O157:H7), and methicillin-resistant strains of Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa) were determined. RESULTS: These 16 peptides were folded into an α-helix structure in membrane-mimicking environment. Among these 16 peptides, GIBIM-P5S9K (ATKKCGLFKILKGVGKI) showed the highest antimicrobial activity against E. coli O157:H7 (MIC=10µM), methicillin-resistant Staphylococcus aureus (MRSA) (MIC=25µM) and Pseudomonas aeruginosa (MIC=10 µM). Peptide GIBIM-P5S9K caused permeabilization of the bacterial membrane at 25 µM as determined by the Sytox Green uptake assay and the labelling of these bacteria by using the fluoresceinated peptide. GIBIM-P5S9K seems to be specific for these bacteria because at 50 µM, it provoked lower than 40% of erythrocyte hemolysis. CONCLUSION: New CAMPs have been designed using a genetic algorithm based on selected physicochemical descriptors and single amino acid substitution. These CAMPs interacted quite specifically with the bacterial cell membrane, GIBIM-P5S9K exhibiting high antibacterial activity on Escherichia coli O157:H7, methicillin-resistant strains of Staphylococcus aureus and P. aeruginosa.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/química , Desenho de Fármacos
4.
ACS Biomater Sci Eng ; 4(2): 647-653, 2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33418753

RESUMO

Among all novel challenges nowadays worldwide, infectious disease is probably one of the most important. It is well-known that common treatments used include high doses of antibiotics, which are very invasive therapies for patients. These treatments are more intensive when the infection is related to multidrug resistant microorganisms. In this sense, in this work we report the use of reverse micelles to form less than 5 nm gold, silver, and gold-silver nanoparticles (NPs) with biological activity against five opportunistic Candida strains responsible of several diseases in human beings. As a result, we evaluate the interface properties and droplet-droplet interactions of micelles founding high fluidity in the polar head of the surfactant, necessary to form a flexible interaction channel in the "dimmer" micelle-micelle. In this condition, we form monodispersed, highly reactive NPs with sizes less than 5 nm with high antifungal activity against C. parapsilosis, C. Krusei, C. glabrata, C. guillermondii, and C. albicans, with minimum inhibitory concentrations (MIC50) less than 0.7 ppm in all cases, the lowest reported to the best of our knowledge. These are very promising results to develop alternative therapies to treat fungal diseases in humans, animals, and plants, or to coat conventional surfaces in surgery rooms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA