RESUMO
BACKGROUND: IL-33 is a type 2 inflammatory cytokine that is elevated in the esophageal epithelium of eosinophilic esophagitis (EoE) subjects. We previously developed a mouse model of EoE dependent on constitutive overexpression of IL-33 from the esophageal epithelium (EoE33). OBJECTIVE: Our objective was to develop an inducible, IL-33-dependent model of EoE and examine induction of EoE-associated pathology. METHODS: We utilized a tetracycline-inducible system to express IL-33 in the esophagus by generating 2 transgenic mice. The first (iSophagus) expresses a reverse tetracycline transactivator from the esophageal epithelium. The second (TRE33) features a tetracycline response element driving expression of IL-33. When crossed, these mice generate an inducible model of EoE (iEoE33). Mice were administered doxycycline-infused chow for up to 2 weeks. Cytokines were assessed by ELISA or bead-based multiplex analysis. T cells were assessed by flow cytometry. Pathology was assessed by histology and immunohistochemistry for IL-33, eosinophil peroxidase, CD4, and Ki-67. iEoE33 was treated with steroids and crossed with IL-13-/- mice. RESULTS: Doxycycline-treated iEoE33 mice demonstrated expression of IL-33 in the esophageal epithelium, and esophageal pathology including eosinophilia, CD4+ cell infiltrate, basal zone hyperplasia, and dilated intercellular spaces. These findings became pronounced on day 7 of induction, were accompanied by weight loss and esophageal thickening, and were steroid responsive and IL-13 dependent. CONCLUSION: Inducible IL-33 expression in the esophageal epithelium elicited features pathognomonic of EoE. iEoE33 enables investigation of EoE disease mechanisms as well as initiation, progression, and resolution.
RESUMO
BACKGROUND: Eosinophilic esophagitis (EoE) is an increasingly common inflammatory condition of the esophagus; however, the underlying immunologic mechanisms remain poorly understood. The epithelium-derived cytokine IL-33 is associated with type 2 immune responses and elevated in esophageal biopsy specimens from patients with EoE. OBJECTIVE: We hypothesized that overexpression of IL-33 by the esophageal epithelium would promote the immunopathology of EoE. METHODS: We evaluated the functional consequences of esophageal epithelial overexpression of a secreted and active form of IL-33 in a novel transgenic mouse, EoE33. EoE33 mice were analyzed for clinical and immunologic phenotypes. Esophageal contractility was assessed. Epithelial cytokine responses were analyzed in three-dimensional organoids. EoE33 phenotypes were further characterized in ST2-/-, eosinophil-deficient, and IL-13-/- mice. Finally, EoE33 mice were treated with dexamethasone. RESULTS: EoE33 mice displayed ST2-dependent, EoE-like pathology and failed to thrive. Esophageal tissue remodeling and inflammation included basal zone hyperplasia, eosinophilia, mast cells, and TH2 cells. Marked increases in levels of type 2 cytokines, including IL-13, and molecules associated with immune responses and tissue remodeling were observed. Esophageal organoids suggested reactive epithelial changes. Genetic deletion of IL-13 in EoE33 mice abrogated pathologic changes in vivo. EoE33 mice were responsive to steroids. CONCLUSIONS: IL-33 overexpression by the esophageal epithelium generated immunopathology and clinical phenotypes resembling human EoE. IL-33 may play a pivotal role in the etiology of EoE by activating the IL-13 pathway. EoE33 mice are a robust experimental platform for mechanistic investigation and translational discovery.
Assuntos
Esofagite Eosinofílica , Interleucina-13 , Interleucina-33 , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Esofagite Eosinofílica/imunologia , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/patologia , Eosinófilos/imunologia , Mucosa Esofágica/patologia , Mucosa Esofágica/imunologia , Esôfago/patologia , Esôfago/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-13/metabolismo , Interleucina-33/genética , Interleucina-33/imunologia , Interleucina-33/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos TransgênicosRESUMO
PURPOSE OF REVIEW: The prevalence and incidence of allergic disease have been rising in Westernized countries since the twentieth century. Increasingly, evidence suggests that damage to the epithelium initiates and shapes innate and adaptive immune responses to external antigens. The objective of this review is to examine the role of detergents as a potential risk factor for developing allergic disease. RECENT FINDINGS: Herein, we identify key sources of human detergent exposure. We summarize the evidence suggesting a possible role for detergents and related chemicals in initiating epithelial barrier dysfunction and allergic inflammation. We primarily focus on experimental models of atopic dermatitis, asthma, and eosinophilic esophagitis, which show compelling associations between allergic disease and detergent exposure. Mechanistic studies suggest that detergents disrupt epithelial barrier integrity through their effects on tight junction or adhesion molecules and promote inflammation through epithelial alarmin release. Environmental exposures that disrupt or damage the epithelium may account for the increasing rates of allergic disease in genetically susceptible individuals. Detergents and related chemical compounds represent possible modifiable risk factors for the development or exacerbation of atopy.