Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nano Lett ; 23(11): 5281-5287, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272864

RESUMO

Biotemplated syntheses have emerged as an efficient strategy to control the assembly of metal nanoparticles (NPs) and generate promising plasmonic properties for sensing or biomedical applications. However, understanding the nucleation and growth mechanisms of metallic nanostructures on biotemplate is an essential prerequisite to developing well-controlled nanotechnologies. Here, we used liquid cell Transmission Electron Microscopy (TEM) to reveal how the formation kinetics of gold NPs affects their size and density on Tobacco Mosaic Virus (TMV). These in situ insights are used as a guideline to optimize bench-scale synthesis with the possibility to homogenize the coverage and tune the density of gold NPs on TMV. In line with in situ TEM observations, fluorescence spectroscopy confirms that the nucleation of NPs occurs on the virus capsid rather than in solution. The proximity of gold NPs on TMV allows shifting the plasmonic resonance of the assembly in the biological window.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Vírus do Mosaico do Tabaco , Nanopartículas Metálicas/química , Vírus do Mosaico do Tabaco/química , Ouro/química , Microscopia Eletrônica de Transmissão
3.
Angew Chem Int Ed Engl ; 62(29): e202304950, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37216394

RESUMO

This work proposes a novel method for measuring the intrinsic activity of single metal-based nanoparticles towards water reduction in neutral media at industrially relevant current densities. Instead of using gas nanobubbles as proxy, the method uses optical microscopy to track the local footprint of the reaction through the precipitation of metal hydroxide, which is associated to the local pH increase during electrocatalysis. The results show the electrocatalytic activities of different types of metal nanoparticles and bifunctionnal core-shell nanostructures made of Ni and Pt, and demonstrate the importance of metal hydroxide nano-shells in enhancing electrocatalysis. This method should be generalizable to any electrocatalytic reaction involving pH changes such as nitrate or CO2 reduction.

4.
Adv Mater ; 35(13): e2209615, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36649533

RESUMO

Pulmonary exposure to some engineered nanomaterials can cause chronic lesions as a result of unresolved inflammation. Among 2D nanomaterials and graphene, MoS2 has received tremendous attention in optoelectronics and nanomedicine. Here an integrated approach is proposed to follow up the transformation of MoS2 nanosheets at the nanoscale and assesss their impact on lung inflammation status over 1 month after a single inhalation in mice. Analysis of immune cells, alveolar macrophages, extracellular vesicles, and cytokine profiling in bronchoalveolar lavage fluid (BALF) shows that MoS2 nanosheets induced initiation of lung inflammation. However, the inflammation is rapidly resolved despite the persistence of various biotransformed molybdenum-based nanostructures in the alveolar macrophages and the extracellular vesicles for up to 1 month. Using in situ liquid phase transmission electron microscopy experiments, the dynamics of MoS2 nanosheets transformation triggered by reactive oxygen species could be evidenced. Three main transformation mechanisms are observed directly at the nanoscale level: 1) scrolling of the dispersed sheets leading to the formation of nanoscrolls and folded patches, 2) etching releasing soluble MoO4 - , and 3) oxidation generating oxidized sheet fragments. Extracellular vesicles released in BALF are also identified as a potential shuttle of MoS2 nanostructures and their degradation products and more importantly as mediators of inflammation resolution.


Assuntos
Vesículas Extracelulares , Pneumonia , Animais , Camundongos , Molibdênio/química , Dissulfetos/química , Inflamação/induzido quimicamente
5.
Faraday Discuss ; 242(0): 129-143, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36331026

RESUMO

The development of synthesis methods with enhanced control over the composition, size and atomic structure of High Entropy Nano-Alloys (HENA) could give rise to a new repertoire of nanomaterials with unprecedented functionalities, notably for mechanical, catalytic or hydrogen storage applications. Here, we have developed two original synthesis methods, one by a chemical route and the other by a physical one, to fabricate HENA with a size between 3 and 10 nm and a face centered cubic structure containing three (CoNiPt), four (CoNiPtCu and CoNiPtAu) or five (CoNiPtAuCu) metals close to the equiatomic composition. The key point in the proposed chemical synthesis method is to compensate the difference in reactivity of the different metal precursors by increasing the synthesis temperature using high boiling solvents. Physical syntheses were performed by pulsed laser ablation using a precise alternating deposition of the individual metals on a heated amorphous carbon substrate. Finally, we have exploited aberration-corrected transmission electron microscopy to explore the nanophase diagram of these nanostructures and reveal intrinsic thermodynamic properties of those complex nanosystems. In particular, we have shown (i) that the complete mixing of all elements can only occur close to the equiatomic composition and (ii) how the Ostwald ripening during HENA synthesis can induce size-dependent deviations from the equiatomic composition leading to the formation of large core-shell nanoparticles.

6.
J Am Chem Soc ; 144(33): 15236-15251, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35971919

RESUMO

Calcium carbonate (CaCO3) is one of the most significant biominerals in nature. Living organisms are able to control its biomineralization by means of an organic matrix to tailor a myriad of hybrid functional materials. The soluble organic components are often proteins rich in acidic amino-acids such as l-aspartic acid. While several studies have demonstrated the influence of amino acids on the crystallization of calcium carbonate, nanoscopic insight of their impact on CaCO3 mineralization, in particular at the early stages, is still lacking. Herein, we implement liquid phase-transmission electron microscopy (LP-TEM) in order to visualize in real-time and at the nanoscale the prenucleation stages of CaCO3 formation. We observe that l-aspartic acid favors the formation of individual and aggregated prenucleation clusters which are found stable for several minutes before the transformation into amorphous nanoparticles. Combination with hyperpolarized solid state nuclear magnetic resonance (DNP NMR) and density functional theory (DFT) calculations allow shedding light on the underlying mechanism at the prenucleation stage. The promoting nature of l-aspartic acid with respect to prenucleation clusters is explained by specific interactions with both Ca2+ and carbonates and the stabilization of the Ca2+-CO32-/HCO3- ion pairs favoring the formation and stabilization of the CaCO3 transient precursors. The study of prenucleation stages of mineral formation by the combination of in situ LP-TEM, advanced analytical techniques (including hyperpolarized solid-state NMR), and numerical modeling allows the real-time monitoring of prenucleation species formation and evolution and the comprehension of their relative stability.


Assuntos
Ácido Aspártico , Carbonato de Cálcio , Carbonato de Cálcio/química , Carbonatos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão
7.
Nanoscale ; 14(30): 10950-10957, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35860928

RESUMO

We have investigated the early stages of the formation of iron oxide nanoparticles from iron stearate precursors in the presence of sodium stearate in an organic solvent by in situ liquid phase transmission electron microscopy (IL-TEM). Before nucleation, we have evidenced the spontaneous formation of vesicular assemblies made of iron polycation-based precursors sandwiched between stearate layers. Nucleation of iron oxide nanoparticles occurs within the walls of the vesicles, which subsequently collapse upon the consumption of the iron precursors and the growth of the nanoparticles. We then evidenced that fine control of the electron dose, and therefore of the local concentration of reactive iron species in the vicinity of the nuclei, enables controlling crystal growth and selecting the morphology of the resulting iron oxide nanoparticles. Such a direct observation of the nucleation process templated by vesicular assemblies in a hydrophobic organic solvent sheds new light on the formation process of metal oxide nanoparticles and therefore opens ways for the synthesis of inorganic colloidal systems with tunable shape and size.

8.
ACS Nano ; 13(10): 11372-11381, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31584800

RESUMO

Unveiling the mechanism of electrocatalytic processes is fundamental for the search of more efficient and stable electrode materials for clean energy conversion devices. Although several in situ techniques are now available to track structural changes during electrocatalysis, especially of water oxidation, a direct observation, in real space, of morphological changes of nanostructured electrocatalysts is missing. Herein, we implement an in situ electrochemical Transmission Electron Microscopy (in situ EC-TEM) methodology for studying electrocatalysts of the oxygen evolution reaction (OER) during operation, by using model cobalt oxide Co3O4 nanoparticles. The observation conditions were optimized to mimic standard electrochemistry experiments in a regular electrochemical cell, allowing cyclic voltammetry and chronopotentiometry to be performed in similar conditions in situ and ex situ. This in situ EC-TEM method enables us to observe the chemical, morphological, and structural evolutions occurring in the initial nanoparticle-based electrode exposed to different aqueous electrolytes and under OER conditions. The results show that surface amorphization occurs, yielding a nanometric cobalt (oxyhydr)oxide-like phase during OER. This process is irreversible and occurs to an extent that has not been described before. Furthermore, we show that the pH and counterions of the electrolytes impact this restructuration, shedding light on the materials properties in neutral phosphate electrolytes. In addition to the structural changes followed in situ during the electrochemical measurements, this study demonstrates that it is possible to rely on in situ electrochemical TEM to reveal processes in electrocatalysts while preserving a good correlation with ex situ regular electrochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA