Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(10): 11260-11276, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31960245

RESUMO

Vachellia campechiana (Mill Seigler & Ebinger) is widely distributed in Mexico and is a dominant species of tailings in Huautla, in the state of Morelos, Mexico. Mining activities carried out in this region generated about 780 thousand tons of bioavailable heavy metal waste (HMs) that were deposited in the environment without any treatment. This study evaluates the bioaccumulation capacity and morphological changes of V. campechiana growing during 1 year in control or tailing substrates (treatments) under greenhouse conditions. The concentration of six HMs was also measured in roots, leaves, and seeds by atomic absorption spectrophotometry. Five metals showed a similar bioaccumulation pattern in the roots and leaves of V. campechiana grown in both substrates: Pb > Fe > Cr > Cu > Zn. The concentrations of Cr, Cu, and Pb were significantly higher in the roots and leaves of individuals growing on the exposed substrate. The presence of essential metals (Cu, Fe, Zn) was only recorded in the seeds, with similar concentrations in both treatments. Seventeen of 18 morphological characters evaluated in V. campechiana decreased in plants exposed to metals. Pb, Cu, and Fe showed a bioconcentration factor greater than one in roots and leaves. The translocation factor showed the following pattern: Cr > Cu = Pb. In conclusion, V. campechiana is a candidate species to phytoremediate environments contaminated with Pb, Cr, and Cu due to its ability to establish itself and turn into the dominant plant species in polluted sites, its ability to bioaccumulate non-essential metals in roots and leaves, and its high rate of HMs translocation.


Assuntos
Fabaceae , Metais Pesados/análise , Poluentes do Solo/análise , Bioacumulação , Chumbo , México
2.
Ecotoxicology ; 27(8): 1161-1177, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30120659

RESUMO

Heavy metals present in mine tailings pollute agroecosystems, put the integrity of the environment at risk and become a major route of exposure to humans. The present study was carried out in Taxco, Guerrero, Mexico, where millions of tons of mine tailings have been deposited. Soils from this region are used for agricultural activities. Maize (Zea mays) was selected as a test plant, because it is one of the most common and important cereal crops in Mexico and worldwide. Thirteen metals were selected and their bioaccumulation in roots, leaves and fruits were measured in plants cultivated in soils contaminated with mine tailings and those cultivated in non-contaminated soils. The effect of metal bioaccumulation on: macro and micromorphology, size, biomass, coloration leaf patterns and on DNA damage levels in different structures were determined. The bioaccumulation pattern was: root > leaf > fruit, being only Mn and Cr bioaccumulated in all three structures and V in the roots and leaves. A significant effect of metal bioaccumulation on 50% of the size and leaf shape and 55% of the biomass characters in Z. mays exposed plants was detected. Regarding micromorphological characters, a significant effect of metal bioaccumulation on 67% of the leaf characters and on 100% of the color basal leaf characters was noted. The effect of metal bioaccumulation on the induction of DNA damage (leaf > fruit > root) was detected employing single cell gel electrophoresis analysis. An approach, in which multi endpoints are used is necessary to estimate the extent of the detrimental effects of metal pollution on agroecosystem integrity contaminated with mine tailings.


Assuntos
Metais Pesados/toxicidade , Poluentes do Solo/toxicidade , Testes de Toxicidade , Zea mays/fisiologia , Biomarcadores/metabolismo , Solo
3.
BMC Vet Res ; 11: 278, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26552648

RESUMO

BACKGROUND: Avian coccidiosis is a disease caused worldwide by several species of parasite Eimeria that causes significant economic losses. This disease affects chickens development and production, that most of times is controlled with anticoccidial drugs. Although efforts have been made to address this disease, they have been made to control Eimeria sporozoites, although enteric stages are often vulnerable, however; the parasite oocyst remains a problem that must be controlled, as it has a resistant structure that facilitates dispersion. Despite some commercial products based on chemical compounds have been developed as disinfectants that destroy oocysts, the solution of the problem remains to be solved. RESULTS: In this work, we assessed in vitro anticoccidial activity of a compound(s) secreted by yeast isolated in oocysts suspension from infected chickens. The yeast was molecularly identified as Meyerozyma guilliermondii, and its anticoccidial activity against Eimeria tenella oocysts was assessed. Here, we report the damage to oocysts walls caused by M. guilliermondii culture, supernatant, supernatant extract and intracellular proteins. In all cases, a significant decreased of oocysts was observed. CONCLUSIONS: The yeast Meyerozyma guilliermondii secretes a compound with anticoccidial activity and also has a compound of protein nature that damages the resistant structure of oocyst, showing the potential of this yeast and its products as a feasible method of coccidiosis control.


Assuntos
Coccidiose/veterinária , Coccidiostáticos/química , Coccidiostáticos/farmacologia , Eimeria/efeitos dos fármacos , Leveduras/classificação , Leveduras/metabolismo , Animais , Galinhas , Coccidiose/prevenção & controle , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Oocistos/efeitos dos fármacos , Filogenia , Reação em Cadeia da Polimerase , RNA Fúngico/genética , RNA Ribossômico 18S/genética
4.
Biomed Res Int ; 2015: 570243, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25667924

RESUMO

We report the isolation of a bacterium from Galleria mellonella larva and its identification using genome sequencing and phylogenomic analysis. This bacterium was named Alcaligenes faecalis strain MOR02. Microscopic analyses revealed that the bacteria are located in the esophagus and intestine of the nematodes Steinernema feltiae, S. carpocapsae, and H. bacteriophora. Using G. mellonella larvae as a model, when the larvae were injected with 24,000 CFU in their hemocoel, more than 96% mortality was achieved after 24 h. Additionally, toxicity assays determined that 1 µg of supernatant extract from A. faecalis MOR02 killed more than 70% G. mellonella larvae 96 h after injection. A correlation of experimental data with sequence genome analyses was also performed. We discovered genes that encode proteins and enzymes that are related to pathogenicity, toxicity, and host/environment interactions that may be responsible for the observed phenotypic characteristics. Our data demonstrates that the bacteria are able to use different strategies to colonize nematodes and kill insects to their own benefit. However, there remains an extensive group of unidentified microorganisms that could be participating in the infection process. Additionally, a nematode-bacterium association could be established probably as a strategy of dispersion and colonization.


Assuntos
Alcaligenes faecalis/genética , Alcaligenes faecalis/patogenicidade , Larva/microbiologia , Mariposas/microbiologia , Controle Biológico de Vetores/métodos , Alcaligenes faecalis/isolamento & purificação , Animais , Produtos Biológicos/farmacologia , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos
5.
Genome Announc ; 2(6)2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25523778

RESUMO

Burkholderia species are widely distributed in the environment. A Burkholderia zhejiangensis strain was isolated from pesticide-contaminated soil from an agricultural field in Mexico and identified as an organophosphorus compound-degrading bacterium. In this study, we report the draft genome sequence of Burkholderia zhejiangensis strain CEIB S4-3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA