Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Faraday Discuss ; 248(0): 29-47, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37814915

RESUMO

Sodium-air batteries (SABs) are receiving considerable attention for the development of next generation battery alternatives due to their high theoretical energy density (up to 1105 W h kg-1). However, most of the studies on this technology are still based on organic solvents; in particular, diglyme, which is highly flammable and toxic for the unborn child. To overcome these safety issues, this research investigates the first use of a branched ether solvent 1,2,3-trimethoxypropane (TMP) as an alternative electrolyte to diglyme for SABs. Through this work, the reactivity of the central tertiary carbon in TMP towards bare sodium metal was identified, while the addition of N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C4mpyr][TFSI]) as a co-solvent proved to be an effective strategy to limit the reactivity. Moreover, a Na-ß-alumina disk was employed for anode protection, to separate the TMP-based electrolyte from the sodium metal. The new cell design resulted in improved cell performance: discharge capacities of up to 1.92 and 2.31 mA h cm-2 were achieved for the 16.6 mol% NaTFSI in TMP and 16.6 mol% NaTFSI in TMP/[C4mpyr][TFSI] compositions, respectively. By means of SEM, Raman and 23Na NMR techniques, NaO2 cubes were identified to be the major discharge product for both electrolyte compositions. Moreover, the hybrid electrolyte was shown to hinder the formation of side-products during discharge - the ratio of NaO2 to side-products in the hybrid electrolyte was 2.4 compared with 0.8 for the TMP-based electrolyte - and a different charge mechanism for the dissolution of NaO2 cubes for each electrolyte was observed. The findings of this work demonstrate the high potential of TMP as a base solvent for SABs, and the importance of careful electrolyte composition design in order to step towards greener and less toxic batteries.

5.
ACS Appl Mater Interfaces ; 14(3): 4022-4034, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019264

RESUMO

A series of hybrid electrolytes composed of diglyme and ionic liquids (ILs) have been investigated for Na-O2 batteries, as a strategy to control the growth and purity of the discharge products during battery operation. The dependence of chemical composition of the ILs on the size, purity, and distribution of the discharge products has been evaluated using a wide range of experimental and spectroscopic techniques. The morphology and composition of the discharge products found in the Na-O2 cells have a complex dependence on the physicochemical properties of the electrolyte as well as the speciation of the Na+ and superoxide radical anion. All of these factors control the nucleation and growth phenomena as well as electrolyte stability. Smaller discharge particle sizes and largely homogeneous (2.7 ± 0.5 µm) sodium superoxide (NaO2) crystals with only 9% of side products were found in the hybrid electrolyte containing the pyrrolidinium IL with a linear alkyl chain. The long-term cyclability of Na-O2 batteries with high Coulombic efficiency (>90%) was obtained for this electrolyte with fewer side products (20 cycles at 0.5 mA h cm-2). In contrast, rapid failure was observed with the use of the phosphonium-based electrolyte, which strongly stabilizes the superoxide anion. A high discharge capacity (4.46 mA h cm-2) was obtained for the hybrid electrolyte containing the pyrrolidinium-based IL bearing a linear alkyl chain with a slightly lower value (3.11 mA h cm-2) being obtained when the hybrid electrolyte contained similar pyrrolidinium-based IL bearing an alkoxy chain.

6.
Dalton Trans ; 50(4): 1357-1365, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33426546

RESUMO

The P2/O3 layered oxide system is thought to benefit from a synergistic enhancement, resulting from the presence of both phases, which makes it a promising cathode material for Na-ion battery applications. Here, biphasic P2/O3-Na2/3Li0.18Mn0.8Fe0.2O2 is investigated via a combination of neutron and X-ray scattering techniques. Neutron diffraction data indicates that the O3 alkali metal site is fully occupied by Li. Real time operando X-ray diffraction data shows the structural evolution of the composite electrode - at the charged state there is no evidence of O2, OP4 or Z phases. The results presented herein provide new insight into site preference of Li in biphasic materials and highlights the value of utilizing multiple phases to achieve high performance layered cathode materials for sodium battery applications.

7.
Small ; 17(2): e2005034, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325651

RESUMO

Graphene aerogels derived from a biomolecule-assisted aqueous electrochemical exfoliation route are explored as cathode materials in sodium-oxygen (Na-O2 ) batteries. To this end, the natural nucleotide adenosine monophosphate (AMP) is used in the multiple roles of exfoliating electrolyte, aqueous dispersant, and functionalizing agent to access high quality, electrocatalytically active graphene nanosheets in colloidal suspension (bioinks). The surface phenomena occurring on the electrochemically derived graphene cathode is thoroughly studied to understand and optimize its electrochemical performance, where a cooperative effect between the nitrogen atoms and phosphates from the AMP molecules is demonstrated. Moreover, the role of the nitrogen atoms in the adenine nucleobase of AMP and short-chain phosphate is unraveled. Significantly, the use of such cathodes with a proper amount of AMP molecules adsorbed on the graphene nanosheets delivers a discharge capacity as high as 9.6 mAh cm-2 and performs almost 100 cycles with a considerably reduced cell overpotential and a coulombic efficiency of ≈97% at high current density (0.2 mA cm-2 ). This study opens a path toward the development of environmentally friendly air cathodes by the use of natural nucleotides which offers a great opportunity to explore and manufacture bioinspired cathodes for metal-oxygen batteries.


Assuntos
Grafite , Fontes de Energia Elétrica , Eletrodos , Metais , Sódio
8.
Front Chem ; 8: 605, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32775318

RESUMO

Aprotic metal-O2 batteries have attracted the interest of the research community due to their high theoretical energy density that target them as potential energy storage systems for automotive applications. At present, these devices show various practical problems, which hinder the attainment of the high theoretical energy densities. Among the main limitations, we can highlight the irreversible parasitic reactions that lead to premature death of the battery. The degradation processes, mainly related to the electrolyte, lead to the formation of secondary products that accumulate throughout the cycling in the air electrode. This accumulation of predominantly insulating products results in the blocking of active sites, promoting less efficiency in system performance. Recently, it has been discovered that the superoxide intermediate radical anion is involved in the generation of the reactive oxygen singlet species (1O2) in metal-O2 batteries. The presence of singlet oxygen is intimately linked with electrolyte degradation processes and with carbon-electrode corrosion reactions. This review analyzes the nature of singlet oxygen, while clarifying its toxic role in metal-O2 batteries. Besides, the main mechanisms of deactivation of singlet oxygen are presented, trying to inspire the research community in the development of new molecules capable of mitigating the harmful effects related to this highly reactive species.

9.
ACS Appl Mater Interfaces ; 12(1): 494-506, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31825208

RESUMO

Integrated approaches that expedite the production and processing of graphene into useful structures and devices, particularly through simple and environmentally friendly strategies, are highly desirable in the efforts to implement this two-dimensional material in state-of-the-art electrochemical energy storage technologies. Here, we introduce natural nucleotides (e.g., adenosine monophosphate) as bifunctional agents for the electrochemical exfoliation and dispersion of graphene nanosheets in water. Acting both as exfoliating electrolytes and colloidal stabilizers, these biomolecules facilitated access to aqueous graphene bio-inks that could be readily processed into aerogels and inkjet-printed interdigitated patterns. Na-O2 batteries assembled with the graphene-derived aerogels as the cathode and a glyme-based electrolyte exhibited a full discharge capacity of ∼3.8 mAh cm-2 at a current density of 0.2 mA cm-2. Moreover, shallow cycling experiments (0.5 mAh cm-2) boasted a capacity retention of 94% after 50 cycles, which outperformed the cycle life of prior graphene-based cathodes for this type of battery. The positive effect of the nucleotide-adsorbed nanosheets on the battery performance is discussed and related to the presence of the phosphate group in these biomolecules. Microsupercapacitors made from the interdigitated graphene patterns as the electrodes also displayed a competitive performance, affording areal and volumetric energy densities of 0.03 µWh cm-2 and 1.2 mWh cm-3 at power densities of 0.003 mW cm-2 and 0.1 W cm-3, respectively. Taken together, by offering a green and straightforward route to different types of functional graphene-based materials, the present results are expected to ease the development of novel energy storage technologies that exploit the attractions of graphene.

10.
ChemSusChem ; 13(6): 1203-1225, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31872539

RESUMO

The depletion of fossil fuels, the rapid evolution of the global economy, and high living standards require the development of new energy-storage systems that can meet the needs of the world's population. Metal-oxygen batteries (M=Li, Na) arise, therefore, as promising alternatives to widely used lithium-ion batteries, due to their high theoretical energy density, which approaches that of gasoline. Although significant progress has been made in recent years, there are still several challenges to overcome to reach the final commercialization of this technology. One of the most limiting and challenging factors is the development of bifunctional cathodes towards oxygen reduction and evolution reactions. In this sense, graphene, which is very promising and tunable, has been widely explored by the research community as a key material for this technology. Herein, a wide literature overview is presented and analyzed with the aim of guiding future research in this field.

11.
J Phys Chem Lett ; 10(22): 7050-7055, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31650842

RESUMO

Sodium-oxygen (Na-O2) cells are a promising high energy density storage technology with a theoretical specific energy of 1605 Wh kg-1. However, this technology faces certain challenges in order to achieve both a high practical energy density as well as long-term cycling capability. In this Letter, a superior Coulombic cyclic efficiency, close to 100%, has been demonstrated by the use of a bilayer electrolyte composed of an ionogel and an ionic liquid electrolyte, reported herein for the first time. The presence of the ionogel plays a major role in the prevention of side reactions originating at the anode, providing a promising route to extend cell cycling, whereas the ionic liquid is essential to support high reaction rates at the cathode.

12.
ChemSusChem ; 12(17): 4054-4063, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31301269

RESUMO

A series of electrospun binder-free carbon nanofiber (CNF) mats have been studied as air cathodes for Na-oxygen batteries using a pyrrolidinium-based electrolyte and compared with the commercial air cathode Toray 090. A tenfold increase in the discharge capacity is attained when using CNFs in comparison with Toray 090, affording a discharge capacity of 1.53 mAh cm-2 at a high discharge rate of 0.63 mA cm-2 . The good specific discharge and charge capacities of these CNFs are determined by the void space and the highly accessible surface of the carbon fiber. Furthermore, a threefold increase has been attained in terms of specific capacity by controlling the flooding of the air cathode and hence the location of the three-phase boundary within the CNF mat. The enhancement in performance has been correlated to the morphology, composition, distribution, and location of the discharge products. Sodium superoxide and peroxide were identified as the discharge products and, more importantly, the common side reaction discharge products, which are known to be detrimental to battery performance (including sodium fluoride, sodium hydroxide, and formate), were not observed, exemplifying the stability of the pyrrolidinium-based electrolyte and these binder-free CNF air cathodes.

13.
J Phys Chem Lett ; 7(7): 1161-6, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26961215

RESUMO

Rechargeable metal-oxygen batteries are receiving significant interest as a possible alternative to current state of the art lithium ion batteries due to their potential to provide higher gravimetric energies, giving significantly lighter or longer-lasting batteries. Recent advances suggest that the Na-O2 battery, in many ways analogous to Li-O2 yet based on the reversible formation of sodium superoxide (NaO2), has many advantages such as a low charge overpotential (∼100 mV) resulting in improved efficiency. In this Perspective, we discuss the current state of knowledge in Na-O2 battery technology, with an emphasis on the latest experimental studies, as well as theoretical models. We offer special focus on the principle outstanding challenges and issues and address the advantages/disadvantages of the technology when compared with Li-O2 batteries as well as other state-of-the-art battery technologies. We finish by detailing the direction required to make Na-O2 batteries both commercially and technologically viable.

14.
ChemSusChem ; 8(23): 3932-40, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26493650

RESUMO

Lithium-oxygen (Li-O2 ) batteries are receiving considerable interest owing to their potential for higher energy densities than current Li-ion systems. However, the lack stability of carbon-based oxygen electrodes is believed to promote carbonate formation leading to capacity fade and limiting the cycling performance of the battery. To improve the stability and cyclability of these systems, alternative electrode materials are required. Metal oxides are mainly utilized at low current densities, whereas noble metals show outstanding performance at high current densities. Carbides appear to provide a good compromise between electrochemical performance and cost, which makes them interesting materials for further investigations. Here, a critical review of current carbon-free electrode research is provided with the goal of identifying routes to its successful optimization.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Oxigênio/química , Eletrodos
15.
J Phys Chem Lett ; 6(13): 2636-43, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26266746

RESUMO

Understanding the oxygen reduction reaction kinetics in the presence of Na ions and the formation mechanism of discharge product(s) is key to enhancing Na-O2 battery performance. Here we show NaO2 as the only discharge product from Na-O2 cells with carbon nanotubes in 1,2-dimethoxyethane from X-ray diffraction and Raman spectroscopy. Sodium peroxide dihydrate was not detected in the discharged electrode with up to 6000 ppm of H2O added to the electrolyte, but it was detected with ambient air exposure. In addition, we show that the sizes and distributions of NaO2 can be highly dependent on the discharge rate, and we discuss the formation mechanisms responsible for this rate dependence. Micron-sized (∼500 nm) and nanometer-scale (∼50 nm) cubes were found on the top and bottom of a carbon nanotube (CNT) carpet electrode and along CNT sidewalls at 10 mA/g, while only micron-scale cubes (∼2 µm) were found on the top and bottom of the CNT carpet at 1000 mA/g, respectively.

16.
J Phys Chem Lett ; 5(16): 2850-6, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26278088

RESUMO

Although dimethyl sulfoxide (DMSO) has emerged as a promising solvent for Li-air batteries, enabling reversible oxygen reduction and evolution (2Li + O2 ⇔ Li2O2), DMSO is well known to react with superoxide-like species, which are intermediates in the Li-O2 reaction, and LiOH has been detected upon discharge in addition to Li2O2. Here we show that toroidal Li2O2 particles formed upon discharge gradually convert into flake-like LiOH particles upon prolonged exposure to a DMSO-based electrolyte, and the amount of LiOH detectable increases with increasing rest time in the electrolyte. Such time-dependent electrode changes upon and after discharge are not typically monitored and can explain vastly different amounts of Li2O2 and LiOH reported in oxygen cathodes discharged in DMSO-based electrolytes. The formation of LiOH is attributable to the chemical reactivity of DMSO with Li2O2 and superoxide-like species, which is supported by our findings that commercial Li2O2 powder can decompose DMSO to DMSO2, and that the presence of KO2 accelerates both DMSO decomposition and conversion of Li2O2 into LiOH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA