Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
PLoS One ; 19(9): e0309533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39348376

RESUMO

Adult T-cell leukemia/lymphoma (ATL) develops from the infection of T cells with human T lymphotropic virus type 1 (HTLV-1). There are an estimated 5-20 million HTLV-1 carriers worldwide and the patients are frequently observed in subtropical Africa, the Caribbean, Middle East, South America, and South West Japan. The prognosis of ATL remains dismal due to rapid acquired resistance to treatment with cytotoxic chemotherapeutic agents. In particular, the development of novel therapies for relapsed or refractory (R/R) ATL is an unmet need. Previous clinical trials revealed that bendamustine (BDM) was effective as the first-line treatment for indolent lymphoma and R/R cases of diffuse large B-cell lymphoma. Its major advantage is that it has few side effects such as hair loss and peripheral neuropathy, and does not impair the quality of life. However, its efficacy has not been verified for ATL in pre-clinical or clinical studies. In this study, we have shown the cytotoxicity of BDM alone and in combination with novel agents including the histone deacetylase (HDAC) inhibitor tucidinostat, the enhancer of zeste homolog 1/2 (EZH1/2) dual inhibitor valemetostat, and the Bcl2 family inhibitor ABT-737. The combined in vitro effects of BDM and tucidinostat were reproduced in a murine model without any obvious hematological toxicity. Our present results suggest that the combination of tucidinostat and BDM could additively prolong the survival of patients with R/R progressive ATL. The efficacy and safety of this combination are thus worthy of investigation in clinical settings.


Assuntos
Cloridrato de Bendamustina , Leucemia-Linfoma de Células T do Adulto , Cloridrato de Bendamustina/uso terapêutico , Cloridrato de Bendamustina/farmacologia , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/patologia , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Apoptose/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
3.
J Mol Evol ; 92(3): 286-299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634872

RESUMO

The genus Macaca is widely distributed, occupies a variety of habitats, shows diverse phenotypic characteristics, and is one of the best-studied genera of nonhuman primates. Here, we reported five re-sequencing Macaca genomes, including one M. cyclopis, one M. fuscata, one M. thibetana, one M. silenus, and one M. sylvanus. Together with published genomes of other macaque species, we combined 20 genome sequences of 10 macaque species to investigate the gene introgression and genetic differences among the species. The network analysis of the SNV-fragment trees indicates a reticular phylogeny of macaque species. Combining the results from various analytical methods, we identified extensive ancient introgression events among macaque species. The multiple introgression signals between different species groups were also observed, such as between fascicularis group species and silenus group species. However, gene flow signals between fascicularis and sinica group were not as strong as those between fascicularis group and silenus group. On the other hand, the unidirect gene flow in M. arctoides probably occurred between the progenitor of M. arctoides and the common ancestor of fascicularis group. Our study also shows that the genetic backgrounds and genetic diversity of different macaques vary dramatically among species, even among populations of the same species. In conclusion, using whole genome sequences and multiple methods, we have studied the evolutionary history of the genus Macaca and provided evidence for extensive introgression among the species.


Assuntos
Evolução Molecular , Fluxo Gênico , Genoma , Macaca , Filogenia , Animais , Macaca/genética , Genoma/genética , Introgressão Genética , Genômica/métodos , Evolução Biológica , Variação Genética/genética
4.
Zoolog Sci ; 41(2): 216-229, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587917

RESUMO

The house shrew (Suncus murinus-S. montanus species complex) colonized regions across southern Asia and the Indian Ocean following human activity. The house shrew is distributed on islands of the Ryukyu Archipelago, the southernmost part of Japan, but the evolutionary history of the shrew on those islands and possible associations between these populations and humans remain unknown. In this study, we conducted phylogenetic and population genetic analyses based on both nuclear and mitochondrial genome sequences of house shrews. Phylogenetic analyses based on mitochondrial cytochrome b (cytb) sequences revealed that shrews from the Ryukyu Archipelago showed strong genetic affinity to Vietnamese and southern Chinese shrews. Demographic analyses of cytb sequences indicated a rapid population expansion event affecting the haplotype group in Vietnam, southern China, and the Ryukyu Archipelago 3300-7900 years ago. Furthermore, gene flow between Ryukyu (Yonaguni Island) and Taiwan and between Ryukyu and Vietnam inferred from f4 statistics of the nuclear genomes suggested repeated immigration to Ryukyu in recent years. The present study demonstrates that the Nagasaki population has a different origin from the Ryukyu population. These findings elucidate the complex pattern of genetic admixture in house shrews and provide insights into their evolutionary history.


Assuntos
DNA Mitocondrial , Musaranhos , Animais , Humanos , Filogenia , Japão , DNA Mitocondrial/genética , Musaranhos/genética , Genética Populacional
5.
Genome Res ; 34(3): 366-375, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38508692

RESUMO

The house mouse (Mus musculus), which is commensal to humans, has spread globally via human activities, leading to secondary contact between genetically divergent subspecies. This pattern of genetic admixture can provide insights into the selective forces at play in this well-studied model organism. Our analysis of 163 house mouse genomes, with a particular focus on East Asia, revealed substantial admixture between the subspecies castaneus and musculus, particularly in Japan and southern China. We revealed, despite the different level of autosomal admixture among regions, that all Y Chromosomes in the East Asian samples belonged to the musculus-type haplogroup, potentially explained by genomic conflict under sex-ratio distortion owing to varying copy numbers of ampliconic genes on sex chromosomes, Slx and Sly Our computer simulations, designed to replicate the observed scenario, show that the preferential fixation of musculus-type Y Chromosomes can be achieved with a slight increase in the male-to-female birth ratio. We also investigated the influence of selection on the posthybridization of the subspecies castaneus and musculus in Japan. Even though the genetic background of most Japanese samples closely resembles the subspecies musculus, certain genomic regions overrepresented the castaneus-like genetic components, particularly in immune-related genes. Furthermore, a large genomic block (∼2 Mbp) containing a vomeronasal/olfactory receptor gene cluster predominantly harbored castaneus-type haplotypes in the Japanese samples, highlighting the crucial role of olfaction-based recognition in shaping hybrid genomes.


Assuntos
Genoma , Cromossomo Y , Animais , Camundongos , Feminino , Masculino , Ásia Oriental , Cromossomo Y/genética , Haplótipos , Seleção Genética , Humanos , Filogenia , Evolução Molecular
6.
Cureus ; 15(8): e43597, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37719590

RESUMO

INTRODUCTION: Bone defects are often observed after surgery for fractures and bone tumors. Their treatment is technically difficult and sometimes results in negative clinical and economic outcomes. To repair bone defects, a bone graft is implanted by selecting a transplant material from an autologous or artificial bone. Each method has its advantages and disadvantages. Compared to the gold standard of autologous bone graft, bone graft substitutes are not limited by the amount of harvested graft and avoid complications at the donor site. ORB-03 is a new cotton-like bone graft substitute composed of beta-tricalcium phosphate (ß-TCP) and a bioabsorbable polymer, polylactic-co-glycolic acid (PLGA). ORB-03 is easy to mold and can fill various bone defect shapes, and its three-dimensional microfiber scaffold can enhance the differentiation of osteoblasts and promote osteogenesis. We investigated the efficacy, ease of handling, and safety of ORB-03 as a bone graft substitute. A multicenter, open-label, single-group study was conducted at six institutions. METHODS: Between July 2018 and August 2019, 60 patients with bone defects caused by fracture, benign tumors, or an iliac donor site from bone harvesting were enrolled in this study; 54 patients were finally included for the safety analysis and 48 patients for the image analysis. During surgery, ORB-03 was mixed with the patient's blood and molded into a bone defect. To evaluate the efficacy of ORB-03, radiography and computed tomography (CT) were performed at intervals until 24 weeks after surgery. RESULTS: The effective rate and its accurate bilateral 95% confidence interval (CI) were calculated based on the efficacy criteria at 24 weeks postoperatively. The ease with which ORB-03 could be handled in surgery was evaluated. Adverse events that occurred after surgery were evaluated, and those associated with ORB-03 were examined. Bone fusion was good in all cases, and the radiography and CT effective rates were 100.0% and 91.5%, respectively. Handling was easy in all cases. There were four adverse events, none of which were clinically problematic. CONCLUSIONS: ORB-03 was found to be easy to handle, safe, and effective as a bone graft substitute for bone defects.

7.
Clin Transl Med ; 13(8): e1364, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37581569

RESUMO

BACKGROUND: The immunomodulatory drug lenalidomide, which is now widely used for the treatment of multiple myeloma (MM), exerts pharmacological action through the ubiquitin-dependent degradation of IKZF1 and subsequent down-regulation of interferon regulatory factor 4 (IRF4), a critical factor for the survival of MM cells. IKZF1 acts principally as a tumour suppressor via transcriptional repression of oncogenes in normal lymphoid lineages. In contrast, IKZF1 activates IRF4 and other oncogenes in MM cells, suggesting the involvement of unknown co-factors in switching the IKZF1 complex from a transcriptional repressor to an activator. The transactivating components of the IKZF1 complex might promote lenalidomide resistance by residing on regulatory regions of the IRF4 gene to maintain its transcription after IKZF1 degradation. METHODS: To identify unknown components of the IKZF1 complex, we analyzed the genome-wide binding of IKZF1 in MM cells using chromatin immunoprecipitation-sequencing (ChIP-seq) and screened for the co-occupancy of IKZF1 with other DNA-binding factors on the myeloma genome using the ChIP-Atlas platform. RESULTS: We found that c-FOS, a member of the activator protein-1 (AP-1) family, is an integral component of the IKZF1 complex and is primarily responsible for the activator function of the complex in MM cells. The genome-wide screening revealed the co-occupancy of c-FOS with IKZF1 on the regulatory regions of IKZF1-target genes, including IRF4 and SLAMF7, in MM cells but not normal bone marrow progenitors, pre-B cells or mature T-lymphocytes. c-FOS and IKZF1 bound to the same consensus sequence as the IKZF1 complex through direct protein-protein interactions. The complex also includes c-JUN and IKZF3 but not IRF4. Treatment of MM cells with short-hairpin RNA against FOS or a selective AP-1 inhibitor significantly enhanced the anti-MM activity of lenalidomide in vitro and in two murine MM models. Furthermore, an AP-1 inhibitor mitigated the lenalidomide resistance of MM cells. CONCLUSIONS: C-FOS determines lenalidomide sensitivity and mediates drug resistance in MM cells as a co-factor of IKZF1 and thus, could be a novel therapeutic target for further improvement of the prognosis of MM patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Ikaros , Lenalidomida , Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-fos , Animais , Humanos , Camundongos , Medula Óssea , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Transativadores/uso terapêutico , Fator de Transcrição AP-1/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo
8.
Genes Genet Syst ; 98(2): 73-87, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37558462

RESUMO

We analyzed 196 haplotype sequences from a gene-rich region (250 kb) that includes Mc1r, a gene involved in coat color regulation, to gain insight into the evolution of coat color variation in subspecies of the house mouse Mus musculus. Phylogenetic networks revealed haplotype groups from the major subspecies of M. m. castaneus (CAS), M. m. domesticus (DOM), and M. m. musculus (MUS). Using haplotype sequences assigned to each of CAS and MUS through phylogenetic analysis, we proposed migration routes associated with prehistoric humans from west to east across Eurasia. Comparing nucleotide diversity among subspecies-specific haplotypes in different geographic areas showed a marked reduction during migration, particularly in MUS-derived haplotypes from Korea and Japan, suggesting intensive population bottlenecks during migration. We found that a C>T polymorphism at site 302 (c.302C>T) in the Mc1r coding region correlated with a darkening of dorsal fur color in both CAS and MUS. However, C/C homozygous mice in MUS showed marked variation in lightness, indicating the possibility of another genetic determinant that affects the lightness of dorsal fur color. Detailed sequence comparisons of haplotypes revealed that short fragments assigned to DOM were embedded in CAS-assigned fragments, indicating ancient introgression between subspecies. The estimated age of c.302C>T also supports the hypothesis that genetic interaction between subspecies occurred in ancient times. This suggests that the genome of M. musculus evolved through gene flow between subspecies over an extended period before the movement of the species in conjunction with prehistoric humans.


Assuntos
Polimorfismo Genético , Animais , Camundongos , Humanos , Filogenia , Haplótipos , Ásia , Japão
9.
Blood Adv ; 7(4): 508-524, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35930695

RESUMO

Extramedullary disease (EMD) is known to be associated with chemoresistance and poor prognosis in multiple myeloma (MM); however, the mechanisms of its development are not fully understood. Elucidating the mechanism of EMD development and its therapeutic targeting would greatly contribute to further improvement of treatment outcome in patients with MM. Here, we show that bone marrow stroma cell-derived hyaluronan (HA) elicits homophilic interactions of MM cells by binding to surface CD44, especially long-stretch variants, under physiological shear stress and generates cell clusters that might develop into EMD. We recapitulated the development of EMD via administration of HA in a syngeneic murine MM model in a CD44-dependent manner. HA-induced MM cell clusters exhibited the specific resistance to proteasome inhibitors (PIs) in vitro and in murine models via γ-secretase-mediated cleavage of the intracellular domains of CD44, which in turn transactivated PI resistance-inducible genes. Treatment of HA-injected mice with anti-CD44 antibody or γ-secretase inhibitors readily suppressed the development of EMD from transplanted MM cells and significantly prolonged the survival of recipients by overcoming PI resistance. The HA-CD44 axis represents a novel pathway to trigger EMD development and could be a target of the prediction, prevention, and treatment of EMD in patients with MM.


Assuntos
Ácido Hialurônico , Mieloma Múltiplo , Camundongos , Animais , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Secretases da Proteína Precursora do Amiloide
10.
Genes Genet Syst ; 97(4): 193-207, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36403967

RESUMO

In Madagascar, the house mouse (Mus musculus) is widely believed to have colonized with human activities and is now one of the most abundant rodents on the island. However, its genetic background at the genomic level remains unclear, and clarifying this would help us to infer the timing of introduction and route of migration. In this study, we determined the whole-genome sequences of five Madagascar house mice captured from an inland location in Madagascar. We examined the genetic background of samples by analyzing the mitochondrial and autosomal genomes. We confirmed that the mitochondrial genome lineages of collected samples formed a single clade placed at one of the most basal positions in the Mus musculus species. Autosomal genomic sequences revealed that these samples are most closely related to the subspecies M. m. castaneus (CAS), but also contain a genetic component of the subspecies M. m. domesticus (DOM). The signature of a strong population bottleneck 1,000-3,000 years ago was observed in both mitochondrial and autosomal genomic data. In a comparison with global samples of M. musculus, the Madagascar samples showed strong genetic affinity to many CAS samples across a wide range of Indian Ocean coastal and insular regions, with divergence time estimated as around 4,000 years ago. These findings support the proposition that the ancestors of these animals started to colonize the island with human agricultural activity and experienced a complex history during their establishment.


Assuntos
Genoma , Camundongos , Animais , Humanos , Madagáscar , Genoma/genética
11.
OMICS ; 26(6): 339-347, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35666246

RESUMO

Drug repurposing has broad importance in planetary health for therapeutics innovation in infectious diseases as well as common or rare chronic human diseases. Drug repurposing has also proved important to develop interventions against the COVID-19 pandemic. We propose a new approach for drug repurposing involving two-stage prediction and machine learning. First, diseases are clustered by gene expression on the premise that similar patterns of altered gene expression imply critical pathways shared in different disease conditions. Next, drug efficacy is assessed by the reversibility of abnormal gene expression, and results are clustered to identify repurposing targets. To cluster similar diseases, gene expression data from 262 cases of 31 diseases and 268 controls were analyzed by Uniform Manifold Approximation and Projection for Dimension Reduction followed by k-means to optimize the number of clusters. For evaluation, we examined disease-specific gene expression data for inclusion, body myositis, polymyositis, and dermatomyositis (DM), and used LINCS L1000 characteristic direction signatures search engine (L1000CDS2) to obtain lists of small-molecule compounds that reversed the expression patterns of these specifically altered genes as candidates for drug repurposing. Finally, the functions of affected genes were analyzed by Gene Set Enrichment Analysis to examine consistency with expected drug efficacy. Consequently, we found disease-specific gene expression, and importantly, identified 20 drugs such as BMS-387032, phorbol-12-myristate-13-acetate, mitoxantrone, alvocidib, and vorinostat as candidates for repurposing. These were previously noted to be effective against two of the three diseases, and have a high probability of being effective against the other. That is, inclusion body myositis and DM. The two-stage prediction approach to drug repurposing presented here offers innovation to inform future drug discovery and clinical trials in a variety of human diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Reposicionamento de Medicamentos , COVID-19/genética , Análise por Conglomerados , Reposicionamento de Medicamentos/métodos , Expressão Gênica , Humanos , Aprendizado de Máquina , Pandemias
12.
Genome Biol Evol ; 14(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35524942

RESUMO

For more than 100 years, house mice (Mus musculus) have been used as a key animal model in biomedical research. House mice are genetically diverse, yet their genetic background at the global level has not been fully understood. Previous studies have suggested that they originated in South Asia and diverged into three major subspecies, almost simultaneously, approximately 110,000-500,000 years ago; however, they have spread across the world with the migration of modern humans in prehistoric and historic times (∼10,000 years ago to the present day) and have undergone secondary contact, which has complicated the genetic landscape of wild house mice. In this study, we sequenced the whole-genome sequences of 98 wild house mice collected from Eurasia, particularly East Asia, Southeast Asia, and South Asia. Although wild house mice were found to consist of three major genetic groups corresponding to the three major subspecies, individuals representing admixtures between subspecies were more prevalent in East Asia than has been previously recognized. Furthermore, several samples exhibited an incongruent pattern of genealogies between mitochondrial and autosomal genomes. Using samples that likely retained the original genetic components of subspecies with the least admixture, we estimated the pattern and timing of divergence among the subspecies. The estimated divergence time of the three subspecies was 187,000-226,000 years ago. These results will help us to understand the genetic diversity of wild mice on a global scale, and the findings will be particularly useful in future biomedical and evolutionary studies involving laboratory mice established from such wild mice.


Assuntos
Evolução Biológica , Genoma , Animais , Sequência de Bases , Camundongos
13.
Front Genet ; 13: 801382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391802

RESUMO

The Vero cell line is an immortalized cell line established from kidney epithelial cells of the African green monkey. A variety of Vero sublines have been developed and can be classified into four major cell lineages. In this study, we determined the whole-genome sequence of Vero E6 (VERO C1008), which is one of the most widely used cell lines for the proliferation and isolation of severe acute respiratory syndrome coronaviruses (SARS-CoVs), and performed comparative analysis among Vero JCRB0111, Vero CCL-81, Vero 76, and Vero E6. Analysis of the copy number changes and loss of heterozygosity revealed that these four sublines share a large deletion and loss of heterozygosity on chromosome 12, which harbors type I interferon and CDKN2 gene clusters. We identified a substantial number of genetic differences among the sublines including single nucleotide variants, indels, and copy number variations. The spectrum of single nucleotide variants indicated a close genetic relationship between Vero JCRB0111 and Vero CCL-81, and between Vero 76 and Vero E6, and a considerable genetic gap between the former two and the latter two lines. In contrast, we confirmed the pattern of genomic integration sites of simian endogenous retroviral sequences, which was consistent among the sublines. We identified subline-specific/enriched loss of function and missense variants, which potentially contribute to the differences in response to viral infection among the Vero sublines. In particular, we identified four genes (IL1RAP, TRIM25, RB1CC1, and ATG2A) that contained missense variants specific or enriched in Vero E6. In addition, we found that V739I variants of ACE2, which functions as the receptor for SARS-CoVs, were heterozygous in Vero JCRB0111, Vero CCL-81, and Vero 76; however, Vero E6 harbored only the allele with isoleucine, resulting from the loss of one of the X chromosomes.

14.
Genes Genet Syst ; 96(6): 271-284, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35283410

RESUMO

While the house mouse (Mus musculus), widely distributed in Eurasia, is known to have substantial coat color variation between and within local populations, in both primary and secondary distribution areas, including the Japanese archipelago, the evolutionary history of the color variation is poorly understood. To address the ventral fur color variation, we quantified the lightness of museum skin specimens, and found that the southern subspecies, M. m. castaneus (CAS), has high and low lightness in dry and rainy geographic regions, respectively. The northern subspecies, M. m. musculus (MUS), has low and high levels of lightness in the high and middle latitudes of northern Eurasia, respectively. We examined sequence variation of the agouti signaling protein gene (Asip), which is known to be responsible for the ventral fur color. We performed phylogenetic analyses with 196 haplotype sequences of Asip (~180 kb) generated by phasing the whole-genome data of 98 wild mice reported previously. Network and phylogenetic tree construction revealed clustering of haplotypes representing the two subspecies, MUS and CAS. A number of subclusters with geographic affinities appeared within the subspecies clusters, in which the essential results were consistent with those reconstructed with whole mitochondrial genome data, indicating that the phased haplotype genome sequences of the nuclear genome can be a useful tool for tracing the dispersal of geographical lineages. The results of phylogeographic analysis showed that CAS mice with darker ventral fur possessed similar Asip haplotypes across the geographic distribution, suggesting that these haplotypes are major causes of the historical introduction of Asip haplotypes for darker ventral fur in mice from northern India to the peripheral areas, including the Japanese archipelago. Similarly, MUS in East Asia, which has a white abdomen, formed an Asip haplogroup with that from northern Iran, also with a white abdomen.


Assuntos
Proteína Agouti Sinalizadora , Genoma Mitocondrial , Cor de Cabelo , Camundongos , Proteína Agouti Sinalizadora/genética , Pelo Animal , Animais , Cor de Cabelo/genética , Haplótipos , Camundongos/genética , Filogenia , Filogeografia
15.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410373

RESUMO

Previous studies of the brown bear (Ursus arctos) on Hokkaido Island, Japan, have detected three geographically distinct subpopulations representing different mitochondrial lineages and shown that gene flow between subpopulations has occurred due to male-biased dispersal. In this study, we determined whole-genomic sequences for six Hokkaido brown bears and analyzed these data along with previously published genomic sequences of 17 brown bears from other parts of the world. We found that the Hokkaido population is genetically distinct from the other populations, keeping genetic diversity higher than the endangered populations in western Europe but lower than most populations on the continents. A reconstruction of historical demography showed no increase in population size for the Hokkaido population during the Eemian interglacial period (130,000-114,000 years ago). In a phylogenetic analysis of the autosomal data, the Hokkaido population formed a clade distinct from North American and European populations, showing that it has maintained genetic diversity independently from continental populations following geographical isolation on the island. This autosomal genetic similarity contrasts with the geographically separate mitochondrial lineages on Hokkaido and indicates the occurrence of male-driven gene flow between subpopulations.


Assuntos
Ursidae , Animais , DNA Mitocondrial/genética , Demografia , Genômica , Japão , Masculino , Filogenia , Análise de Sequência , Ursidae/genética
17.
Genome Biol Evol ; 13(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33045051

RESUMO

The role of sex-specific demography in hybridization and admixture of genetically diverged species and populations is essential to understand the origins of the genomic diversity of sexually reproducing organisms. In order to infer how sex-linked loci have been differentiated undergoing frequent hybridization and admixture, we examined 17 whole-genome sequences of seven species representing the genus Macaca, which shows frequent inter-specific hybridization and predominantly female philopatry. We found that hybridization and admixture were prevalent within these species. For three cases of suggested hybrid origin of species/subspecies, Macaca arctoides, Macaca fascicularis ssp. aurea, and Chinese Macaca mulatta, we examined the level of admixture of X chromosomes, which is less affected by male-biased migration than that of autosomes. In one case, we found that Macaca cyclopis and Macaca fuscata was genetically closer to Chinese M. mulatta than to the Indian M. mulatta, and the admixture level of Chinese M. mulatta and M. fuscata/cyclopis was more pronounced on the X chromosome than on autosomes. Since the mitochondrial genomes of Chinese M. mulatta, M. cyclopis, and M. fuscata were found to cluster together, and the mitochondrial genome of Indian M. mulatta is more distantly related, the observed pattern of genetic differentiation on X-chromosomal loci is consistent with the nuclear swamping hypothesis, in which strong, continuous male-biased introgression from the ancestral Chinese M. mulatta population to a population related to M. fuscata and M. cyclopis generated incongruencies between the genealogies of the mitochondrial and nuclear genomes.


Assuntos
Genômica , Macaca/genética , Sequenciamento Completo do Genoma , Cromossomo X , Animais , Mapeamento Cromossômico , Evolução Molecular , Feminino , Variação Genética , Genoma Mitocondrial , Hibridização Genética , Macaca/classificação , Macaca fascicularis/genética , Macaca fuscata/genética , Macaca mulatta/genética , Masculino , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
18.
Heredity (Edinb) ; 126(1): 132-147, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32934361

RESUMO

The Eurasian house mouse Mus musculus is useful for tracing prehistorical human movement related to the spread of farming. We determined whole mitochondrial DNA (mtDNA) sequences (ca. 16,000 bp) of 98 wild-derived individuals of two subspecies, M. m. musculus (MUS) and M. m. castaneus (CAS). We revealed directional dispersals reaching as far as the Japanese Archipelago from their homelands. Our phylogenetic analysis indicated that the eastward movement of MUS was characterised by five step-wise regional extension events: (1) broad spatial expansion into eastern Europe and the western part of western China, (2) dispersal to the eastern part of western China, (3) dispersal to northern China, (4) dispersal to the Korean Peninsula and (5) colonisation and expansion in the Japanese Archipelago. These events were estimated to have occurred during the last 2000-18,000 years. The dispersal of CAS was characterised by three events: initial divergences (ca. 7000-9000 years ago) of haplogroups in northernmost China and the eastern coast of India, followed by two population expansion events that likely originated from the Yangtze River basin to broad areas of South and Southeast Asia, including Sri Lanka, Bangladesh and Indonesia (ca. 4000-6000 years ago) and to Yunnan, southern China and the Japanese Archipelago (ca. 2000-3500). This study provides a solid framework for the spatiotemporal movement of the human-associated organisms in Holocene Eastern Eurasia using whole mtDNA sequences, reliable evolutionary rates and accurate branching patterns. The information obtained here contributes to the analysis of a variety of animals and plants associated with prehistoric human migration.


Assuntos
Genoma Mitocondrial , Animais , China , Migração Humana , Indonésia , Camundongos , Filogenia
19.
Front Genet ; 11: 546106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193621

RESUMO

The human hepatoma-derived HuH-7 cell line and its derivatives (Huh7.5 and Huh7.5.1) have been widely used as a convenient experimental substitute for primary hepatocytes. In particular, these cell lines represent host cells suitable for propagating the hepatitis C virus (HCV) in vitro. The Huh7.5.1-8 cell line, a subline of Huh7.5.1, can propagate HCV more efficiently than its parental cells. To provide genomic information for cells' quality control, we performed whole-genome sequencing of HuH-7 and Huh7.5.1-8 and identified their characteristic genomic deletions, some of which are applicable to an in-house test for cell authentication. Among the genes related to HCV infection and replication, 53 genes were found to carry missense or loss-of-function mutations likely specific to the HuH-7 and/or Huh7.5.1-8. Eight genes, including DDX58 (RIG-I), BAX, EP300, and SPP1 (osteopontin), contained mutations observed only in Huh7.5.1-8 or mutations with higher frequency in Huh7.5.1-8. These mutations might be relevant to phenotypic differences between the two cell lines and may also serve as genetic markers to distinguish Huh7.5.1-8 cells from the ancestral HuH-7 cells.

20.
PLoS One ; 15(4): e0232274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330205

RESUMO

The Flaviviridae is a family of enveloped viruses with a positive-sense single-stranded RNA genome. It contains many viruses that threaten human health, such as Japanese encephalitis virus (JEV) and yellow fever virus (YFV) of the genus Flavivirus as well as hepatitis C virus of the genus Hepacivirus. Cell culture systems highly permissive for the Flaviviridae viruses are very useful for their isolation, propagation, and diagnosis, an understanding of their biology, and the development of vaccines and antiviral agents. Previously, we isolated a human hepatoma HuH-7-derived cell clone, Huh7.5.1-8, which is highly permissive to hepatitis C virus infection. Here, we have characterized flavivirus infection in the Huh7.5.1-8 cell line by comparing with that in the African green monkey kidney-derived Vero cell line, which is permissive for a wide spectrum of viruses. Upon infection with JEV, Huh7.5.1-8 cells produced a higher amount of virus particles early in infection and were more susceptible to virus-induced cell death than Vero cells. Similar outcomes were obtained when the cells were infected with another flavivirus, YFV (17D-204 strain). Quantification of cellular and extracellular viral RNA revealed that high JEV production in Huh7.5.1-8 cells can be attributed to rapid viral replication kinetics and efficient virus release early in infection. In a plaque assay, Huh7.5.1-8 cells developed JEV plaques more rapidly than Vero cells. Although this was not the case with YFV plaques, Huh7.5.1-8 cells developed higher numbers of YFV plaques than Vero cells. Sequence analysis of cDNA encoding an antiviral RNA helicase, RIG-I, showed that Huh7.5.1-8 cells expressed not only a full-length RIG-I mRNA with a known dominant-negative missense mutation but also variants without the mutation. However, the latter mRNAs lacked exon 5/6-12, indicating functional loss of RIG-I in the cells. These characteristics of the Huh7.5.1-8 cell line are helpful for flavivirus detection, titration, and propagation.


Assuntos
Carcinoma Hepatocelular/virologia , Chlorocebus aethiops/virologia , Flavivirus/crescimento & desenvolvimento , Animais , Linhagem Celular , Linhagem Celular Tumoral , Flavivirus/genética , Infecções por Flavivirus/virologia , Hepacivirus/genética , Humanos , RNA Viral/genética , Células Vero , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA