Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1176676, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234915

RESUMO

Maternal antibiotics administration (MAA) is among the widely used therapeutic approaches in pregnancy. Although published evidence demonstrates that infants exposed to antibiotics immediately after birth have altered recognition memory responses at one month of age, very little is known about in utero effects of antibiotics on the neuronal function and behavior of children after birth. Therefore, this study aimed to evaluate the impact of MAA at different periods of pregnancy on memory decline and brain structural alterations in young mouse offspring after their first month of life. To study the effects of MAA on 4-week-old offspring, pregnant C57BL/6J mouse dams (2-3-month-old; n = 4/group) were exposed to a cocktail of amoxicillin (205 mg/kg/day) and azithromycin (51 mg/kg/day) in sterile drinking water (daily/1 week) during either the 2nd or 3rd week of pregnancy and stopped after delivery. A control group of pregnant dams was exposed to sterile drinking water alone during all three weeks of pregnancy. Then, the 4-week-old offspring mice were first evaluated for behavioral changes. Using the Morris water maze assay, we revealed that exposure of pregnant mice to antibiotics at the 2nd and 3rd weeks of pregnancy significantly altered spatial reference memory and learning skills in their offspring compared to those delivered from the control group of dams. In contrast, no significant difference in long-term associative memory was detected between offspring groups using the novel object recognition test. Then, we histologically evaluated brain samples from the same offspring individuals using conventional immunofluorescence and electron microscopy assays. To our knowledge, we observed a reduction in the density of the hippocampal CA1 pyramidal neurons and hypomyelination in the corpus callosum in groups of mice in utero exposed to antibiotics at the 2nd and 3rd weeks of gestation. In addition, offspring exposed to antibiotics at the 2nd or 3rd week of gestation demonstrated a decreased astrocyte cell surface area and astrocyte territories or depletion of neurogenesis in the dentate gyrus and hippocampal synaptic loss, respectively. Altogether, this study shows that MAA at different times of pregnancy can pathologically alter cognitive behavior and brain development in offspring at an early age after weaning.

2.
Front Nutr ; 9: 565051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252286

RESUMO

OBJECTIVE: This study aimed to investigate and compare the morphological and biochemical characteristics of the hippocampus and the spatial memory of young adult ApoE-/- mice on a standard chow diet, a low-fat diet (LFD), a high-fat diet (HFD), and an HFD supplemented with lingonberries. METHODS: Eight-week-old ApoE-/- males were divided into five groups fed standard chow (Control), an LFD (LF), an HFD (HF), and an HFD supplemented with whole lingonberries (HF+WhLB) or the insoluble fraction of lingonberries (HF+InsLB) for 8 weeks. The hippocampal cellular structure was evaluated using light microscopy and immunohistochemistry; biochemical analysis and T-maze test were also performed. Structural synaptic plasticity was assessed using electron microscopy. RESULTS: ApoE-/- mice fed an LFD expressed a reduction in the number of intact CA1 pyramidal neurons compared with HF+InsLB animals and the 1.6-3.8-fold higher density of hyperchromic (damaged) hippocampal neurons relative to other groups. The LF group had also morphological and biochemical indications of astrogliosis. Meanwhile, both LFD- and HFD-fed mice demonstrated moderate microglial activation and a decline in synaptic density. The consumption of lingonberry supplements significantly reduced the microglia cell area, elevated the total number of synapses and multiple synapses, and increased postsynaptic density length in the hippocampus of ApoE-/- mice, as compared to an LFD and an HFD without lingonberries. CONCLUSION: Our results suggest that, in contrast to the inclusion of fats in a diet, increased starch amount (an LFD) and reduction of dietary fiber (an LFD/HFD) might be unfavorable for the hippocampal structure of young adult (16-week-old) male ApoE-/- mice. Lingonberries and their insoluble fraction seem to provide a neuroprotective effect on altered synaptic plasticity in ApoE-/- animals. Observed morphological changes in the hippocampus did not result in notable spatial memory decline.

3.
Nutr Neurosci ; 23(8): 600-612, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30353787

RESUMO

Lingonberries (LB) have been shown to have beneficial metabolic effects, which is associated with an altered gut microbiota. This study investigated whether the LB-induced improvements were associated with altered gut- and neuroinflammatory markers, as well as cognitive performance in ApoE-/- mice fed high-fat (HF) diets. Whole LB, as well as two separated fractions of LB were investigated. Eight-week-old male ApoE-/- mice were fed HF diets (38% kcal) containing whole LB (wLB), or the insoluble (insLB) and soluble fractions (solLB) of LB for 8 weeks. Inclusion of wLB and insLB fraction reduced weight gain, reduced fat deposition and improved glucose response. Both wLB and insLB fraction also changed the caecal microbiota composition and reduced intestinal S100B protein levels. The solLB fraction mainly induced weight loss in the mice. There were no significant changes in spatial memory, but significant increases in synaptic density in the hippocampus were observed in the brain of mice-fed wLB and insLB. Thus, this study shows that all lingonberry fractions counteracted negative effects of HF feedings on metabolic parameters. Also, wLB and insLB fraction showed to potentially improve brain function in the mice.


Assuntos
Encéfalo/efeitos dos fármacos , Encefalite/prevenção & controle , Gastrite/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Vaccinium vitis-Idaea , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Dieta Hiperlipídica , Ácidos Graxos Voláteis , Metabolismo dos Lipídeos , Masculino , Camundongos Knockout para ApoE , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Sinapses/efeitos dos fármacos
4.
Br J Nutr ; 112(12): 2060-7, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25348808

RESUMO

The maldigestion and malabsorption of fat in infants fed milk formula results due to the minimal production of pancreatic lipase. Thus, to investigate lipid digestion and absorption and mimic the situation in newborns, a young porcine exocrine pancreatic insufficient (EPI) model was adapted and validated in the present study. A total of thirteen EPI pigs, aged 8 weeks old, were randomised into three groups and fed either a milk-based formula or a milk-based formula supplemented with either bacterial or fungal lipase. Digestion and absorption of fat was directly correlated with the addition of lipases as demonstrated by a 30% increase in the coefficient of fat absorption. In comparison to the control group, a 40 and 25% reduction in total fat content and 26 and 45% reduction in n-3 and n-6 fatty acid (FA) content in the stool was observed for lipases 1 and 2, respectively. Improved fat absorption was reflected in the blood levels of lipid parameters. During the experiment, only a very slight gain in body weight was observed in EPI piglets, which can be explained by the absence of pancreatic protease and amylase in the gastrointestinal tract. This is similar to newborn babies that have reduced physiological function of exocrine pancreas. In conclusion, we postulate that the EPI pig model fed with infant formula mimics the growth and lipid digestion and absorption in human neonates and can be used to elucidate further importance of fat and FA in the development and growth of newborns, as well as for testing novel formula compositions.


Assuntos
Gorduras Insaturadas na Dieta/metabolismo , Digestão , Modelos Animais de Doenças , Insuficiência Pancreática Exócrina/metabolismo , Fórmulas Infantis , Absorção Intestinal , Lipase/deficiência , Animais , Peso Corporal , Insuficiência Pancreática Exócrina/etiologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fezes , Trato Gastrointestinal/metabolismo , Crescimento , Humanos , Recém-Nascido , Ligadura , Lipase/farmacologia , Metabolismo dos Lipídeos , Masculino , Leite , Pâncreas Exócrino , Ductos Pancreáticos/cirurgia , Distribuição Aleatória , Suínos
5.
Int J Dev Neurosci ; 35: 64-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24642047

RESUMO

The first milk, colostrum, is an important source of nutrients and an exclusive source of immunoglobulins (Ig), essential for the growth and protection from infection of newborn pigs. Colostrum intake has also been shown to affect the vitality and behaviour of neonatal pigs. The objective of this study was to evaluate the effects of feeding colostrum and plasma immunoglobulin on brain development in neonatal pigs. Positive correlations were found between growth, levels of total protein and IgG in blood plasma and hippocampus development in sow-reared piglets during the first 3 postnatal days. In piglets fed an elemental diet (ED) for 24h, a reduced body weight, a lower plasma protein level and a decreased level of astrocyte specific protein in the hippocampus was observed, as compared to those that were sow-reared. The latter was coincident with a reduced microgliogenesis and an essentially diminished number of neurons in the CA1 area of the hippocampus after 72h. Supplementation of the ED with purified plasma Ig, improved the gliogenesis and supported the trophic and immune status of the hippocampus. The data obtained indicate that the development of the hippocampus structure is improved by colostrum or an Ig-supplemented elemental diet in order to stimulate brain protein synthesis and its development during the early postnatal period.


Assuntos
Colostro , Hipocampo/crescimento & desenvolvimento , Imunoglobulina G/administração & dosagem , Imunoglobulina G/sangue , Suínos/sangue , Suínos/crescimento & desenvolvimento , Administração Oral , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Suplementos Nutricionais , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia
6.
Anat Rec (Hoboken) ; 294(6): 1057-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21538930

RESUMO

Post-ischemic injury of the hippocampus unrolls at different levels and has both functional and structural implications. The deficiency in neuron energy metabolism is an initiating factor. We performed transmission electron microscopic (TEM) comparative analysis of mitochondria in excitatory spine synapses in CA1 stratum radiatum and CA3 hippocampal areas after 5 min of global cerebral ischemia in Mongolian gerbils, 4 and 7 days after reperfusion. Electron microscopy and unbiased morphometric methods were used to evaluate synaptic plasticity, and the number and size of mitochondria in synaptic terminals. We compared the morphological organization of mitochondria in presynaptic terminals between CA1 and CA3 areas in control and post-ischemic condition according to the following morphometric parameters: mitochondrial volume fraction, mitochondrial frequency in CA1 and CA3 terminals, mean number of mitochondria per presynaptic terminal, frequency of damaged mitochondria in terminals, and density of presynaptic terminals. Our ultrastructural study revealed statistically significant differences in morphometric parameters between CA1 and CA3 areas in control conditions, as well as in post-ischemic conditions. Also, we found temporal differences in measured parameters obtained 4 and 7 days after reperfusion. This study showed significant morphological differences in the organization of mitochondria in excitatory spine synapses between CA1 and CA3 areas, which corresponded with already known differences in functionality and sensitivity to the ischemic insult. Our conclusion is that revealed post-ischemic changes in mitochondrial distribution in presynaptic CA1 and CA3 terminals could be an indicator of hippocampal metabolic dysfunction and synaptic plasticity.


Assuntos
Isquemia Encefálica/patologia , Região CA1 Hipocampal/ultraestrutura , Região CA3 Hipocampal/ultraestrutura , Mitocôndrias/ultraestrutura , Células Piramidais/ultraestrutura , Animais , Gerbillinae , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA