Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37857516

RESUMO

PURPOSE: Deproteinized bovine bone or synthetic hydroxyapatite are 2 prevalent bone grafting materials used in the clinical treatment of peri-implant bone defects. However, the differences in bone formation among these materials remain unclear. This study evaluated osteogenesis kinetics in peri-implant defects using 2 types of deproteinized bovine bone (Bio-Oss® and Bio-Oss/Collagen®) and 2 types of synthetic hydroxyapatite (Apaceram-AX® and Refit®). We considered factors including newly generated bone volume; bone, osteoid, and material occupancy; and bone-to-implant contact. METHODS: A beagle model with a mandibular defect was created by extracting the bilateral mandibular third and fourth premolars. Simultaneously, an implant was inserted into the defect, and the space between the implant and the surrounding bone walls was filled with Bio-Oss, Bio-Oss/Collagen, Apaceram-AX, Refit, or autologous bone. Micro-computed tomography and histological analyses were conducted at 3 and 6 months postoperatively (Refit and autologous bone were not included at the 6-month time point due to their rapid absorption). RESULTS: All materials demonstrated excellent biocompatibility and osteoconductivity. At 3 months, Bio-Oss and Apaceram-AX exhibited significantly greater volumes of formation than the other materials, with Bio-Oss having a marginally higher amount. However, this outcome was reversed at 6 months, with no significant difference between the 2 materials at either time point. Apaceram-AX displayed notably slower bioresorption and the largest quantity of residual material at both time points. In contrast, Refit had significantly greater bioresorption, with complete resorption and rapid maturation involving cortical bone formation at the crest at 3 months, Refit demonstrated the highest mineralized tissue and osteoid occupancy after 3 months, albeit without statistical significance. CONCLUSIONS: Overall, the materials demonstrated varying post-implantation behaviors in vivo. Thus, in a clinical setting, both the properties of these materials and the specific conditions of the defects needing reinforcement should be considered to identify the most suitable material.

2.
J Biomater Appl ; 33(9): 1157-1167, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732512

RESUMO

The aim of this in vivo study was to examine the degradation and biocompatibility of the WE43 magnesium alloy containing magnesium yttrium, rare earth elements, and zirconium over a one-year long-term follow-up period. Additionally, we compared anodized WE43 implants with monolithic ones and clarified the effect of the anodization. WE43 cylindrical implants with and without anodization (length, 10 mm; diameter, 0.3 mm) were transplanted into the rat tibia. In both groups, the development of corrosion and the change in implant volume were evaluated by in vivo micro-computed tomography until 12 months, and the bone tissue reaction was observed histologically. In the monolithic WE43 implants, hydrogen gas was evident until 14 days and the volume loss was 36.3% after 12 months. In the anodized WE43 implants, the development of hydrogen gas was inhibited and the volume loss was 27.7% after 12 months. The anodized WE43 implants showed a significantly slower corrosion process in the early phase. Therefore, these implants may require a prolonged period to degrade completely and may even resist complete degradation. At one year post surgery, bone maturation progressed and lamellar bone structure developed around the implant in both groups. In conclusion, the WE43 implants showed good long-term stability and biocompatibility in bone tissue.


Assuntos
Implantes Absorvíveis , Ligas/metabolismo , Parafusos Ósseos , Magnésio/metabolismo , Tíbia/metabolismo , Animais , Corrosão , Hidrogênio/metabolismo , Masculino , Teste de Materiais , Ratos Sprague-Dawley , Tíbia/cirurgia , Tíbia/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA