Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Commun Biol ; 4(1): 1350, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857875

RESUMO

Proteostasis is a challenge for cellular organisms, as all known protein synthesis machineries are error-prone. Here we show by cell fractionation and microscopy studies that misfolded proteins formed in the endoplasmic reticulum can become associated with and partly transported into mitochondria, resulting in impaired mitochondrial function. Blocking the endoplasmic reticulum-mitochondria encounter structure (ERMES), but not the mitochondrial sorting and assembly machinery (SAM) or the mitochondrial surveillance pathway components Msp1 and Vms1, abrogated mitochondrial sequestration of ER-misfolded proteins. We term this mitochondria-associated proteostatic mechanism for ER-misfolded proteins ERAMS (ER-associated mitochondrial sequestration). We testify to the relevance of this pathway by using mutant α-1-antitrypsin as an example of a human disease-related misfolded ER protein, and we hypothesize that ERAMS plays a role in pathological features such as mitochondrial dysfunction.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte/genética , Retículo Endoplasmático/fisiologia , Mitocôndrias/fisiologia , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Células HEK293 , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cells ; 10(11)2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34831079

RESUMO

Translational errors frequently arise during protein synthesis, producing misfolded and dysfunctional proteins. Chronic stress resulting from translation errors may be particularly relevant in tissues that must synthesize and secrete large amounts of secretory proteins. Here, we studied the proteostasis networks in the liver of mice that express the Rps2-A226Y ribosomal ambiguity (ram) mutation to increase the translation error rate across all proteins. We found that Rps2-A226Y mice lack activation of the eIF2 kinase/ATF4 pathway, the main component of the integrated stress response (ISR), as well as the IRE1 and ATF6 pathways of the ER unfolded protein response (ER-UPR). Instead, we found downregulation of chronic ER stress responses, as indicated by reduced gene expression for lipogenic pathways and acute phase proteins, possibly via upregulation of Sirtuin-1. In parallel, we observed activation of alternative proteostasis responses, including the proteasome and the formation of stress granules. Together, our results point to a concerted response to error-prone translation to alleviate ER stress in favor of activating alternative proteostasis mechanisms, most likely to avoid cell damage and apoptotic pathways, which would result from persistent activation of the ER and integrated stress responses.


Assuntos
Estresse do Retículo Endoplasmático , Inativação Gênica , Fígado/metabolismo , Fígado/patologia , Biossíntese de Proteínas , Animais , Modelos Animais de Doenças , Regulação para Baixo/genética , Estresse do Retículo Endoplasmático/genética , Camundongos Transgênicos , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas/genética , Proteostase , Sirtuína 1/metabolismo , Grânulos de Estresse/metabolismo , Resposta a Proteínas não Dobradas/genética , Regulação para Cima/genética
3.
J Am Chem Soc ; 142(1): 530-544, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31790244

RESUMO

Apramycin is a structurally unique member of the 2-deoxystreptamine class of aminoglycoside antibiotics characterized by a monosubstituted 2-deoxystreptamine ring that carries an unusual bicyclic eight-carbon dialdose moiety. Because of its unusual structure, apramycin is not susceptible to the most prevalent mechanisms of aminoglycoside resistance including the aminoglycoside-modifying enzymes and the ribosomal methyltransferases whose widespread presence severely compromises all aminoglycosides in current clinical practice. These attributes coupled with minimal ototoxocity in animal models combine to make apramycin an excellent starting point for the development of next-generation aminoglycoside antibiotics for the treatment of multidrug-resistant bacterial infections, particularly the ESKAPE pathogens. With this in mind, we describe the design, synthesis, and evaluation of three series of apramycin derivatives, all functionalized at the 5-position, with the goals of increasing the antibacterial potency without sacrificing selectivity between bacterial and eukaryotic ribosomes and of overcoming the rare aminoglycoside acetyltransferase (3)-IV class of aminoglycoside-modifying enzymes that constitutes the only documented mechanism of antimicrobial resistance to apramycin. We show that several apramycin-5-O-ß-d-ribofuranosides, 5-O-ß-d-eryrthofuranosides, and even simple 5-O-aminoalkyl ethers are effective in this respect through the use of cell-free translation assays with wild-type bacterial and humanized bacterial ribosomes and of extensive antibacterial assays with wild-type and resistant Gram negative bacteria carrying either single or multiple resistance determinants. Ex vivo studies with mouse cochlear explants confirm the low levels of ototoxicity predicted on the basis of selectivity at the target level, while the mouse thigh infection model was used to demonstrate the superiority of an apramycin-5-O-glycoside in reducing the bacterial burden in vivo.


Assuntos
Aminoaciltransferases/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Glicosídeos/química , Nebramicina/análogos & derivados , Antibacterianos/química , Configuração de Carboidratos , Sequência de Carboidratos , Éteres/química , Testes de Sensibilidade Microbiana , Nebramicina/química , Nebramicina/farmacologia
4.
Commun Biol ; 2: 381, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637312

RESUMO

Translation fidelity is the limiting factor in the accuracy of gene expression. With an estimated frequency of 10-4, errors in mRNA decoding occur in a mostly stochastic manner. Little is known about the response of higher eukaryotes to chronic loss of ribosomal accuracy as per an increase in the random error rate of mRNA decoding. Here, we present a global and comprehensive picture of the cellular changes in response to translational accuracy in mammalian ribosomes impaired by genetic manipulation. In addition to affecting established protein quality control pathways, such as elevated transcript levels for cytosolic chaperones, activation of the ubiquitin-proteasome system, and translational slowdown, ribosomal mistranslation led to unexpected responses. In particular, we observed increased mitochondrial biogenesis associated with import of misfolded proteins into the mitochondria and silencing of the unfolded protein response in the endoplasmic reticulum.


Assuntos
Biogênese de Organelas , Ribossomos/genética , Ribossomos/metabolismo , Resposta a Proteínas não Dobradas/genética , Substituição de Aminoácidos , Retículo Endoplasmático/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Mutação , Biossíntese de Proteínas , Transporte Proteico/genética , Proteostase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA